FATEK

M-PLC Instruction User Manual

NEXT Level SOLUTION

The contents of the manual will be revised as the version changes, and this version may not be the final version. Please go to www.fatek.com technical support area to download the latest version of the manual.

INDEX

Chapter 1 PLC Ladder Diagram and the Coding Rules of Mnemonic．．．．錯誤！尚末定義書籤。

 1：Registereine Rdecooventioaaland Plc tadder．Digeram 1
1－3 Ladder Diagram Structure and Terminology ．． 8
2－1 M SERIES PLC Memory Configuration ．． 2
2－2 Digital and Register Configuration． ．． 3
2－3 CPU Special Relay Details ．． 6
2－4 CPU Special Register Details 14
2－5 Motion Special Relay Details 35
2－6 Motion Special Register Details 94
Chapter 3 M SERIES PLC Instruction Lists 1
3－1 Sequential Instruction List． ．． 2
3－2 Function Instruction List． 5
4Chapter 1 scriSequential Instruction 1
5－1 Chapter 5 of Pescription of Function Instructions 錯
5誤！尚林宊義畵籤n n a Bit Access Transformation 10
5－3 Use Index Register（XR）for Indirect Addressing． 14
5－4 Numbering System 錯誤！尚末定義書籤。
5－5 Overflow and Underflow of Increment（＋1）or Decrement（－1）Instruction（Beginners pleaseskip this section） .20
5－6 Carry and Borrow in Addition／Subtraction 21Chapter 6 Basic Function Instruction.2
6-1 TIMER (T) 3
6-2 COUNTER (C). 8
6-3 SET 13
6-4 RESET (RST) 16
6-5 MASTER CONTROL (MC). 19
6-6 MASTER CONTROL END (MCE) 22
6-7 SKIP (SKP) 23
6-8 SKIP END (SKPE) 25
6-9 DIFFERENTIAL UP (DIFU) 26
6-10 DIFFERENTIAL DOWN (DIFD) 28
6-11 BIT SHIFT (BSHF) 30
6-12 UP/DOWN COUNTER (UDCTR) 32
6-13 MOVE (MOV) 35
6-14 MOVE INVERSE (MOV/) 37
6-15 TOGGLE SWITCH (TOGG) 39
6-16 FAST ADDITION (+) 40
6-17 FAST SUBTRACTION (-) 43
6-18 ADDITION (+) 40
6-19 SUBTRACTION (-) 43
6-20 MULTIPLICATION (*) 50
6-21 DIVISION (/) 53
6-22 INCREMENT (+1) 57
6-23 DECREMEMT (1) 59
6-24 COMPARE (CMP). 61
6-25 LOGICAL AND (AND) 64
6-26 LOGICAL OR (OR) 66
6-27 BIN \rightarrow BCD CONVERSION 68
6-28 BCD \rightarrow BIN CONVERSION 70
Chapter 7 Advanced Function Instructions 錯
誤！尚未定義書籤。
Arithmetical Operation Instruction（FUN24～33）．
\qquad錯誤！尚末定義書籤。
7－2 Logical Operation Instruction（FUN35～36）

\qquad
錯誤！尚未定義書籤。7－3 Comparison Instruction（FUN37）35
7－4 Data Movement Instruction I（FUN40～50）． 37
7－5 Shifting／Rotating Instruction（FUN51～54） 51
7－6 Code Conversion Instruction（FUN55～64） 錯誤！尚末定義書籤。
7－7 Flow Control Instructions II（FUN65～71）． 75
7－8 I／O Instruction I（FUN74～86）． 99
7－9 Cumulateive Timer Instruction（FUN87～89） 117
7－10 Watchdog Timer Instruction（FUN90～91） 121
7－11 High Counting／Timing Instruction（FUN92～93）． 錯誤！尚未定義書籤。
7－12 Slow Up／Slow Down（FUN95～98） 130
7－13 Table Instruction（FUN100～114） 139
7－14 Matrix Instruction（FUN120～130） 173
7－15 NC Positioning Instruction（ FUN137～143） 189
7－16 Enable／Disable（FUN145～146） 230
7－17 NC Positioning Instruction II（FUN147～148） 236
7－18 Communication Instruction（FUN150～156） 242
7－19 Data Movement Instruction II（FUN160～162） 260
7－20 In Line Comparison Instruction（FUN170～175） 270
Chapter 8 Step Instruction Description 錯
7-21 Motion Control Instruction 282
 353
7-23 Floating Point Instruction (FUN200~220) 360
8-1 The Operation Principle of Step Ladder Diagram. 3
8-2 Basic Formation of Step Ladder Diagram 4
8-3 Introduction of Step Instruction: STP, FROM, TO, STPEND9
8-4 Notes for Writing a Step Ladder Diagram. 28
8-5 Application Examples 32
${ }_{8}$ Ghaptern9ik EREadesfime ciock (RTC) 1
9-1 Correspondence Between RTC and the RTCR within PLC.2
9-2 RTC Access Control and Settings3
Amendment Record

Precautions on Using the Product

Compliance with the application-related conditions

The user shall evaluate the suitability of FATEK product and shall install the product in the welldesigned equipment or system.

The user needs to check if the system, machinery or device currently used is compatible with the FATEK product. If the user fails to confirm the compatibility or the suitability, then FATEK shall not be liable for the suitability of the product.
When required by the customer, FATEK shall provide correlated third party certification to define the value rating and the application restrictions that will be applicable for the product. However, the aforesaid certification message shall not be considered as sufficient to determine the suitability of the FATEK product, the final product, the machine, the system and other applications or relevant combinations. Described below are certain applications that should be cautiously treated by the user. In spite of this, the content described below shall neither be considered as having included all of the intended product purposes nor suggesting that all of the following purposes shall be entirely suitable for the product. For example, outdoors use, use in an area subjected to potential chemical contamination or electrical interference or used under conditions or functions not mentioned in this Manual or used with the system, machine and equipment that may create risks to life or properties.
Before working with the product, the user will be required to check if the entire system is marked with a hazard sign and shall select the design that can ensure the safety such as the backup design, etc. Otherwise, the user shall not be allowed to use the product in the application that will present personnel and the property safety concerns. In no event shall FATEK be liable for the specifications, statutory regulations or restrictions that will be used by the customer in the product combination or the product operations.
When using the product, FATEK shall not be liable for the programs edited by the user or the resulting consequences.

Disclaimers

Dimensions and weight

The dimensions and the weight specified in the manual are nominal values only. Even if provided with the tolerance, they cannot be used in the manufacturing purposes.

Performance data

The data specified in this Manual mean that the performance data obtained under FATEKf provided with the tolerance, they cannot be used in the manufacturing purposes. afety such as the backup design, etc. Otherwise, the user shall not be allowed to use the actual performance shall be defined according to the content of the guarantee and the limit of responsibilities established by FATEK.

Errors and negligence

The content of this Manual is provided through careful checking process and is considered as correct. However, FATEK shall not be liable for the errors or the negligence that may be found in the text, printing content and proofreading.

Change of specifications

The product specifications and accessories may be subject to change along with the technical improvement or other reasons. In the event that the published specifications or performance need to be changed or where significant structural change is required, FATEK will change the model number of the product accordingly. If certain specifications of the product have changed, then FATEK will not give the notice under the following situation: when it is required to use a special model number or create particular specifications in order to support the customer's application according to the instructions given by the customer. To confirm actual specifications of the product to be purchased, please contact the local FATEK distributor.

1

PLC Ladder Diagram and the Coding Rules of Mnemonic

1-1 The Operation Principle of Ladder Diagram. 2
1-2 Differences Between Conventional and PLC Ladder Diagram 6
1-3 Ladder Diagram Structure and Terminology. 8

In this chapter, we would like to introduce you the basic principles of ladder diagram.

1-1 The Operation Principle of Ladder Diagram

Ladder Diagram is a type of graphic language for automatic control systems it had been used for a long period since World War II. Until today, it is the oldest and most popular language for automatic control systems. Originally there are only few basic elements available such as A-contact (Normally ON), B contact (Normally OFF), output Coil, Timers and Counters.
Not until the appearance of microprocessor-based PLC, more elements for Ladder Diagram, such as differential contact, retentive coil (refer Table 2) and other instructions that a conventional system cannot provide, became available.
The basic operation principle for both conventional and PLC Ladder Diagram is the same. The main difference between the two systems is that the appearance of the symbols for conventional Ladder Diagram are closer to the real devices, while for PLC system, symbols are simplified for computer display. There are two types of logic system available for Ladder Diagram logic, namely combination logic and sequential logic. Detailed explanations for these two logics are discussed below:

1-1-1 Combination Logic

Combination logic of the Ladder Diagram is a circuit that combines one or more input elements in series or parallel and then send the results to the output elements, such as Coils, Timers/Counters, and other application instructions.

The example illustrated the combination logic using the actual wiring diagram, conventional Ladder Diagram, and PLC Ladder Diagram. Circuit 1 uses a NO (Normally Open) switch that is also called "A" switch or contact. Under normal condition (switch is not pressed), the switch contact is at OFF state and the light is off. If the switch is pressed, the contact status turns ON and the light is on.
In contrast, circuit 2 uses a NC (Normally Close) switch that is also called "B" switch or contact. Under normal condition, the switch contact is at ON state and the light is on. If the switch is pressed, the contact status turns OFF and the light also turns off.
Circuit 3 contains more than one input element. Output Y 2 light will turn on under the condition when X2 is closed or X3 switches to ON, and X4 must switch ON too.

Combination logic_PLC Ladder Diagram

1-1-2 Sequential Logic

The sequential logic is a circuit with feedback control; that is, the output of the circuit will be feedback as an input to the same circuit. The output result remains in the same state even if the input condition changes to the original position. This process can be best explained by the ON/OFF circuit of a latched motor driver as shown in below.

Sequential logic_Actual wiring diagram

Sequential logic_Conventional Ladder Diagram

Sequential logic_ PLC Ladder Diagram

When we first connect this circuit to the power source, X 6 switch is ON but X 5 switch is OFF, therefore the relay Y 3 is OFF. The relay output contacts 1and 2 are OFF because they belong to A contact (ON when relay is ON). Motor does not run. If we press down the switch X 5 , the relay turns ON as well as contacts 1and 2 are ON and the Motor starts. Once the relay turns ON, if we release the X 5 switch (turns OFF), relay can retain its state with the feedback support from contact 1 and it is called Latch Circuit. The following table shows the switching process of the example we have discussed above :

	X5 Switch (NO)	X6 Switch (NC)	Motor (Relay) Status
(1)	Released	Released	OFF
(2)	Pressed	Released	ON
(3)	Released	Released	ON
(4)	Released	Pressed	OFF
(5)	Released	Released	OFF

From the above table we can see that under different stages of sequence, the results can be different even the input statuses are the same. For example, X5 and X6 switches are both released, but the Motor is ON (running) at status (3) and is OFF (stopped) at status (1). This sequential control with the feedback of the output to the input is a unique characteristic of Ladder Diagram circuit. Sometimes we call the Ladder Diagram a "Sequential Control Circuit" and the PLC a "Sequencer". In this section, we only use the A/B contacts and output coils as the example. For more details on sequential instructions please refer to Chapter 5 "Introduction of Sequential Instructions".

1-2 Differences Between Conventional and PLC Ladder Diagram

Although the basic operation principle for both conventional and PLC Ladder Diagram are the same, but in reality, PLC uses the CPU to emulate the conventional Ladder Diagram operations; that is, PLC uses scanning method to monitor the statuses of input elements and output coils, then uses the Ladder Diagram program to emulate the results which are the same as the results produced by the conventional Ladder Diagram logic operations. There is only one CPU, so the PLC has to sequentially examine and execute the program from its first step to the last step, then returns to the first step again and repeats the operation (cyclic execution). The duration of a single cycle of this operation is called the scan time. The scan time varies with the program size. If the scan time is too long, then input and output delay will occur. Longer delay time may cause big problems in controlling fast response systems. At this time, PLCs with short scan time are required. Therefore, scan time is an important specification for PLCs. Due to the advance in microcomputer and ASIC technologies nowadays the scan speed has been enhanced a great deal. M SERIES PLC takes approximately 1 us for IK steps of contact under the condition of continuous address reading, and 5us under the condition of discrete address. The following diagram illustrates the scanning process of a PLC Ladder Diagram.

> PLC sequentially executes the stored program and gets new output results (has not sent to external terminals yet)

[^0]Besides the time scan difference mentioned above, the other difference between the conventional and PLC Ladder Diagram is "Reverse Flow". As shown in the diagram below, if $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 4$ and X 6 are ON, and the remaining elements are OFF: In a conventional Ladder Diagram circuit, a reverse flow route for output YO can be defined by the dashed line and YO will be ON; while PLC scans from left to right and from top to bottom when the PLC CPU is calculating the result of the ladder diagram program. Under the same input conditions, the state of point " a " in this illustration is considered OFF by the CPU because X 3 contact is OFF. Although point a is connected to point " b " via X 4 and both are ON, because the PLC ladder diagram only scans from left to right, the CPU Unable to detect, so YO output is OFF.

Reverse flow of conventional Ladder diagram

1-3 Ladder Diagram Structure and Terminolog

Ladder Diagram Program Example

Note: The maximum size of M SERIES PLC network is 22 columns X 16 rows.

As shown above, the Ladder Diagram can be divided into many small cells. There is total 88 cells (8 rows X 11 columns) for this example Ladder Diagram. One cell can accommodate one element. A completed Ladder Diagram can be formed by connecting all the cells together according to the specific requirements. The terminologies related to Ladder Diagram are illustrated below :
(1). Contact

Contact is an element with open or short status. One kind of contact is called "Input Contact"(reference number prefix with X) and its status reference from the external signals (the input signal comes from the input terminal block). Another one is called "Relay contact" and its status reflects the status of relay coil (please refer to (2). The relation between the reference number and the contact status depends on the contact type. The 6 contact elements provided by M series PLC include: A contact, B contact, Up/Down Differential (TU/TD) contacts and Open/Short contacts. Please refer to (4).
(2). Relay

Same as the conventional relay, it consists of a Coil and a Contact as shown in the diagram below.

As shown in the figure, the relay must have a coil. To make the relay act, the coil must be driven (by OUT command). After the coil is driven, the state of its contacts will be affected As shown in the example, if YO is driven with 1 (make it ON), then the A contact of the relay is 1 , the B contact is 0 , the TU contact is only ON for one scan time, and the TD contact is 0 .
When YO turns OFF, the A contact is 0 , the B contact is 1 , the TU contact is 0 , and the TD contact is only ON for one scan time (for the actions of $\mathrm{A}, \mathrm{B}, \mathrm{TU}$, and TD contacts, please refer to Chapter 4 "Sequential Instructions").

There are four types of M SERIES PLC relays, namely $\mathrm{Y} \triangle \triangle \triangle$ (output relay), $M \triangle \triangle \triangle \triangle$ (internal relay), $\mathrm{S} \triangle \triangle \triangle$ (step relay) and $T R \triangle \triangle$ (register relay). The status of output relays will be sent to the output point of terminal block.
(3). Origin

The starting line at the left side of the Ladder Diagram.
(4). Element

Element is the basic unit of a Ladder Diagram.
An element consists of two parts as shown in the diagram below. One is the element symbol which is called "OP Code" and another is the reference number part which is called "Operand".

Operand

Element

The components of M SERIES PLC have the following 8 types：

Element type	Symbol	Note
A Contact （Normally OPEN）	$\begin{gathered} \square \triangle \triangle \triangle \triangle \triangle \\ \neg 1- \end{gathered}$	$\begin{aligned} & \square \text { can be } X \cdot Y, M, S, T \\ & C \text { (please refer to section } 2.2 \text {) } \end{aligned}$
B Contact （Normally CLOSE）	$\begin{gathered} \square \triangle \triangle \triangle \triangle \triangle \\ -1 / \vdash \end{gathered}$	
Up Differential Contact	$\begin{gathered} \square \triangle \triangle \triangle \triangle \triangle \\ \text { ††ト } \end{gathered}$	\square can be X ， Y ，M S S
Down Differential Contact	$\begin{gathered} \square \triangle \triangle \triangle \triangle \triangle \\ \text { †ヤト } \end{gathered}$	
Open Circuit Contact	－－	
Short Circuit Contact	－－	
Output Coil	$\begin{gathered} \square \triangle \triangle \triangle \triangle \triangle \triangle \\ \text { f f } \end{gathered}$	\square can be $\mathrm{Y}, ~ \mathrm{M}$ ， S
Inverse Output Coil	$\begin{gathered} \square \triangle \triangle \triangle \triangle \triangle \\ (/ /\} \end{gathered}$	

M SERIES PLC Elements
Note：Please refer to section 2.2 for the ranges of X, Y, M, S, T and C contacts or coils．Please refer to section 2.2 for the element characteristics．

There is a special sequential instruction：FOn，which is also one of the elements．Please refer to section 5．1．4＂Function Output FO＂．
（5）．Node
The connection point between two or more elements．
（6）．Block
A circuit consists of two or more elements．
There are two basic types of blocks ：
－Serial Block：Two or more elements are connected in series to form a single row circuit．

Serial Block

- Parallel Block: A parallel (rectangular) closed circuit composed of components or series blocks connected in parallel.

Parallel Block

Note: Complicated block can be formed by the combination of the single element, serial blocks and parallel blocks. When designing a Ladder Diagram with mnemonic entry, it is necessary to break down the circuits into element, serial, and parallel blocks.
(7). Branch

If there are two or more loops connected to the right of the vertical line in any network, this is a branch, and this vertical line is called a branch line.

Branch

Branch

If there is another vertical line on the right side of the branch line to merge the two branch columns of circuits (this vertical line is called the merging line), then this circuit will form a closed circuit (forming a parallel block), and this circuit is a non-branching circuit.

Branch
 Merge line

Branch line and Merge line
If both the right and the left sides of the vertical line are connected with two or more rows of circuits, then it is both a branch line and a merge line as shown in the example below :

Block 1 merge line

Block 2 branch line

For both branch and merge lines
(8). Network

A loop that can perform specific functions is composed of elements, branches, and blocks, which is called a network. A network is the basic unit that can perform complete functions in a ladder diagram program, and a ladder diagram program is composed of a series of networks. The beginning of the network must start from the busbar, and any two columns of circuits without a vertical line connection belong to two different networks (the ones connected by a vertical line belong to the same network). According to this rule, such as the ladder diagram program example, it can be divided into three networks: network 1~3.

Details of Memory Configuration, Single Point (Digital) and Register in PLC

2-1M SERIES PLC Memory Configuration. 2
2-2 Digital and Register Configuration 3
2-3
CPU Special Relay Details 6
2-4
CPU Special Register Details 14
2-5
Motion Special Relay Details 35
2-6 Motion Special Register Details. 94
※※Being designed with very broad flexibility range, the M-Serial PLC allows the user to access ordinary register field (containing 34768 counts of words) by the indirect addressing method. However, it may easily lead to false data writing issues if the indirect addressing parameters are improperly used. When operated in the Read-only Register Field-ROR (containing 4096 counts of words), the M-Serial PLC does not allow the user to access the register by the indirect addressing method. If the user needs to create important parameter values, it is recommended that the ROR (Read-only Register) Field should be used in order to execute the desired reading and writing according to the respective program commands. The main purpose is to avoid the issues that may be generated due to the incorrect parameters required for the indirect addressing.

2-1 M SERIES PLC Memory Configuration

PLC memory configuration diagram

2-2 Digital and Register Configuration

- This configuration is the factory setting:

Item				Specifications	Note
	X	Input contact (DI) (Max. point count: 2048 points)		X0 ~ X1023 (1024)	Corresponding to external digital input
	Y	Output relay (DO) (Max. point count: 2048 points)		YO ~ Y1023 (1024)	Corresponding to external digital output
	TR	Temporary relay		$\begin{gathered} \text { TRO } \sim \text { TR31(32) } \\ \text { (Reserved for system operations) } \end{gathered}$	
	M	Internal relay		M0 ~ M9119 (9120)	M0~M9119 can be configured as retentive or nonretentive relay.
		Special Relay		M9120 ~ M29599 (20480)	
	S	Step Relay		SO ~ S3103 (3104)	SO ~S3103 Can be configured as retentive or nonretentive relay.
	T	"Time-U	Time Up" stat	T0 ~ T1023 (1024)	
	C	"Cou	Count unter-Up conta	C0 ~ C1279 (1280)	
	TMR	Timer current value register	0.0015	T0 ~ T255 (256) *	T0 ~ T1023 numbers for each time base can be adjusted.
			0.015	T256 ~ T511 (256) *	
			0.15	T512 ~ T767 (256) *	
			1S T	T768 ~ T1023 (256) *	
	CTR	Counter current value register	16-bit	CO ~ C1023 (1024)	Can be configured as non-retentive or retentive.
			32-bit	C1024 ~ C1279 (256)	Can be configured as non-retentive or retentive.

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Digital and Register Configuration

Note: During power up or changing operation mode from STOP \rightarrow RUN, all contents in non-retentive relays or registers will be cleared to 0 ; the retentive relays or registers will remain the same state as before.

2-3 CPU Special Relay Details

Relay No.	Function/TAG Symbol	Description
1. Stop, Prohibit Control		
M9120	Emergency Stop control If 1, PLC will be stopped.	
2. Disable, Clear Control		
M9121	Reserve	
M9122	Disable Status Retent Select DISABLE_STATUS_RETENT_CT -	Disabled when at 1
M9123	Clear Non-Retentive Relays CLR_NON_RETENT_RELAY	Cleared when at 1
M9124	Clear Retentive Relays CLK_PULSE_INIT	Cleared when at 1
M9125	Clear Non-Retentive Registers CLR_NON_RETENT_REG	Cleared when at 1
M9126	Clear Retentive Registers CLR_RETENT_REG	Cleared when at 1

3. Pulse	Signals	
M9127 M9218 M9129 M9130	$\left.\begin{array}{l}\text { 0.01S Clock pulse } \\ \text { CLK_PULSE_0_01S } \\ \text { 0.1 S Clock pulse } \\ \text { CLK_PULSE_0_1S } \\ 1 \text { S Clock pulse } \\ \text { CLK_PULSE_1S } \\ 60 \text { S Clock pulse } \\ \text { CLK_PULSE_60S }\end{array}\right]$ ©	
M9131 M9132 M9133	Initial Pulse (First Scan) CLK_PULSE_INIT Scan Cyclic Pulse (3) CLK_PULSE_SCAN PLC Working Mode PLC_WORKING_MODE	=0, PLC working at STOP Mode =1, PLC working at RUN Mode
4. Error Messages		
M9134	System Error Warning CPU_ABNL_WARNING	1: Indicating no expansion unit or exceed the limit on number of I/O points
5. Port1~Port2 Controls		
M9135	Port1 Work Indicator COM_BUSY_P1	0: Port 1 Busy 1: Port 1 Ready
M9136	Port 1 Work Indicator COM_DN_P1	1: Complete all communication transactions of FUN151 (CLINK), only one scan is ON.
M9137	Port 1 Communication Status COM_STATUS_P1	Port 1 has received and transmitted a message
M9138	Port 2 Work Indicator COM_BUSY_P2	0: Port 2 Busy 1: Port 2 Ready
M9139	Port 2 Work Indicator COM_DN_P2	1: Complete all communication transactions of FUN151 (CLINK), only one scan is ON.
M9140	Port 2 Communication Status COM_STATUS_P2	1: Port 2 has received and transmitted a message

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

6. HSCO ~ HSC7 Controls		
M9141	HSCO Software Mask HSCO_MSK	1: Mask
M9142	HSCO Software Clear HSCO_CLR	1: Clear
M9143	HSC1 Software Mask HSC1_MSK	1: Mask
M9144	HSC1 Software Clear HSC1_CLR	1: Clear
M9145	HSC2 Software Mask HSC2_MSK	1: Mask
M9146	HSC2 Software Clear HSC2_CLR	1: Clear
M9147	HSC3 Software Mask HSC3_MSK	1: Mask
M9148	HSC3 Software Clear HSC3_CLR	1: Clear
M9149~ M9157	Reserved	

7. Communication/Timing/Counting Controls		
M9158	The CV value control after the timer "Time-Up" HST_TIME_UP_MODE	0 : The CV value will continue timing until the upper limit is met after "Time-Up". 1: The CV value will stop at the PV value after "Time-Up" (User may control M9158 within the program to control the individual timer)
M9159	The CV value control after the counter "Count-Up" HSC_COUNT_UP_MODE	0 : The CV value will continue counting up to the upper limit after "Count-Up". 1: The CV value will stop at the PV value after "Count-Up" (User may control M9159 within the program to control the individual counter)
M9160	CAM Function Cross 0 Degree Selection CAM_FUNC_SELECT	1: When the upper limit value of the FUN 112 (BKCMP) command is less than the lower limit value, it can be executed (for example, the upper limit value is 10°, the lower limit value is 350°, when the current angle is $250^{\circ} \sim 10^{\circ}$ tha commarican hit ic 11
M9161	High-Speed Pulse Output Stop Selection	
M9162	Update MODBUS Planning MODBUS UPDATE	
M9163	Update COM Setting COM_UPDATE	
M9164	Reboot Network Interface ETH_UPDATE	
M9165	Enable DHCP ETH_DHCP_ENABLE	
M9166	1ms Timer STM 0 Control STMO_CTRL	
M9167	1ms Timer STM 1 Control STM1_CTRL	
M9168	1ms Timer STM 2 Control STM2_CTRL	
M9169	1ms Timer STM 3 Control STM3_CTRL	
M9170	10ms Timer LTM 0 Control LTMO_CTRL	
M9171	10ms Timer LTM 1 Control LTM1_CTRL	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M9172	10ms Timer LTM 2 Control LTM2 CTRL	
M9173	10ms Timer LTM 3 Control LTM3 CTRL	
M9174	0.1 ms HST 0 Control HSTO_CTRL	
M9175	0.1 ms HST 1 Control HST1_CTRL	
M9176	0.1 ms HST 2 Control HST2_CTRL	
M9177	0.1 ms HST 3 Control HST3 CTRL	
M9178	0.1 ms HSTA Circulation Counter Control HSTA_CTRL	
8. RTC	ntrol	
M9179	RTC Setting RTC_UPDATE	
M9180	30 S Adjustment RTC_30S_ADJUSTMENT	
M9181	RTC Installation Checking RTC_INSTALL_CHK	
M9182	Set Value Error RTC_SET_VALUE_ERROR	
9. PSO~	Control	
M9183	PSOO Indicator PSOO_BUSY	
M9184	PSO1 Indicator PSO1_BUSY	
M9185	PSO2 Indicator PSO2 BUSY	
M9186	PSO3 Indicator PSO3_BUSY	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M9187	PSO0 Done PSOO_DN	
M9188	PSO1 Done PSO1_DN	
M9189	PSO2 Done PSO2_DN	
M9190	PSO3 Done PSO3_DN	
M9191	PSO4 Indicator PSO4_BUSY	
M9192	PSO5 Indicator PSO5_BUSY	PSO6 Indicator PSO6_BUSY
M9193	PSO7 Indicator PSO__BUSY	PSO4 Done PSO4_DN
M9194	PSO5 Done PSO5_DN	PSO6 Done PSO6_DN
M9195	PSO7 Done PSO7_DN	
M9196		
M9197		
M9198		

10. Expan	sion Module Operation Field	
M9199~	Please refer to the respective Expansion Module User Manual.	Because the number of special registers is related to the expansion module that will be set by the user, the sequence is not set with a fixed number order. Therefore, it will be learned through the following method: The number of Special Register can be displayed by clicking on the following profile: "Project-> Device View$>$ Device Monitor ->select desired module." The data indicated below are explained by using Data Buffer Relay as the example. The Data Buffer Relay will be started with the same method as the Triggering Data
		Project Designer PLC View Tools

		Information		D A S	M
		I/O	Sta	tus	
			cris	кЗडग50.1	-
			Ch 0	R35558.8)
		it	Ch 1	R35558.9)
		wer limit alarm	Ch 2	R35558.10)
			Ch 3	R35558.11	
			Ch 0	R35558.12)
			Ch 1	R35558.13)
		upper limit alarm	Ch 2	R35558.14)
			Ch 3	R35558.15	
			Ch 0	R35559.8)
		data buffer finish	Ch 1	R35559.9)
		relay	Ch 2	R35559.10	-
			Ch 3	R35559.11	
			Ch 0	R35559.12)
			Ch 1	R35559.13	
		burnout alarm	Ch 2	R35559.14	
				R35559.15	
$\begin{aligned} & \text { M10512~ } \\ & \text { M16095 } \end{aligned}$	For Motion related special relays				

CPU Module special relay list
※All special relays do not provide Up/Down differential contact commands TU. If it is necessary to perform differential action on the special relay, it can be replaced by an indirect method. (Refer to the picture below)

Differential Action Connection of Special Relay

Note: All special relays or registers attached with " $\overline{\text { " }}$ symbol shown in the above table are write prohibited. At the same time, this type of relay still prohibits/disables control and mandatory setting, and does not provide TU and TD contacts.

2-4 CPU Special Registers Details

Register No./ System Tag Code	Function/System Tag Symbol	Description
R35280	HSCO current value Low word HSCO_CV	
R35281	HSCO current value High word HSCO_CV	
R35282	HSCO preset value Low word HSCO_PV	
R35283	HSCO preset value High word HSCO_PV	
R35284	HSC1 current value Low word HSC1_CV	
R35285	HSC1 current value High word HSC1_CV	
R35286	HSC1 preset value Low word HSC1_PV	
R35287	HSC1 preset value High word HSC1_PV	
R35288	HSC2 current value Low word HSC2_CV	
R35289	HSC2 current value High word HSC2_CV	
R35290	HSC2 preset value Low word HSC2_PV	
R35291	HSC2 preset value High word HSC2_PV	
R35292	HSC3 current value Low word HSC3_CV	
R35293	HSC3 current value High word HSC3_CV	
R35294	HSC3 preset value Low word HSC3_PV	
R35295	HSC3 preset value High word HSC3_PV	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Register No./ System Tag Code	Function/System Tag Symbol	Description
R35296	HSC4 current value Low word HSC4_CV	
R35297	HSC4 current value High word HSC4_CV	
R35298	Reserved	
R35299	Reserved	
R35300	HSC5 current value Low word HSC5_CV	
R35301	HSC5 current value High word HSC5_CV	
R35302	Reserved	
R35303	Reserved	
R35304	HSC6 current value Low word HSC6_CV	
R35305	HSC6 current value High word HSC6_CV	
R35306	Reserved	
R35307	Reserved	
R35308	HSC7 current value Low word HSC7_CV	
R35309	HSC7 current value High word HSC7_CV	
R35310	Reserved	
R35311	Reserved	
R35312	Second of calendar RTC_SECOND	
R35313	Minute of RTC RTC_MINUTE	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35314	Hour of RTC RTC_HOUR	
R35315	Date of RTC RTC_DAY	
R35316	Month of RTC RTC_MONTH	
R35317	Year of RTC RTC_YEAR	
R35318	Week of RTC RTC_DAY_OF_WEEK	
R35319	Hour (High byte) + Minute (Low byte) RTC_HOUR_MINUTE	
R35320	Error code of PSOO PSOO_ERR_CODE	
R35321	Error code of PSO1 PSO1_ERR_CODE	
R35322	Error code of PSO2 PSO2_ERR_CODE	
R35323	Error code of PSO3 PSO3_ERR_CODE	
R35324	Completed step number of positioning program for PSOO PSOO_DN_STEP_NUM	
R35325	Completed step number of positioning program for PSO1 PSO1_DN_STEP_NUM	
R35326	Completed step number of positioning program for PSO2 PSO2_DN_STEP_NUM	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35327	Completed step number of positioning program for PSO3 PSO3_DN_STEP_NUM	
R35328	Output frequency for Low Word of PSOO PSOO_CUR_FREQ	
R35329	Output frequency for High Word of PSOO PSOO_CUR_FREQ	
R35330	Output frequency for Low Word of PSO1 PSO1_CUR_FREQ	
R35331	Output frequency for High Word of PSO1 PSO1_CUR_FREQ	
R35332	Output frequency for Low Word of PSO2 PSO2_CUR_FREQ	
R35333	Output frequency for High Word of PSO2 PSO2_CUR_FREQ	-
R35334	Output frequency for Low Word of PSO3 PSO3_CUR_FREQ	-
R35335	Output frequency for High Word of PSO3 PSO3_CUR_FREQ	
R35336	Current pulse position for Low Word of PSOO PSOO_CUR_POS	
R35337	Current pulse position for High Word of PSOO PSOO_CUR_POS	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35338	Current pulse position for Low Word of PSO1 PSO1_CUR_POS	
R35339	Current pulse position for High Word of PSO1 PSO1_CUR_POS	
R35340	Current pulse position for Low Word of PSO2 PSO2_CUR_POS	
R35341	Current pulse position for High Word of PSO2 PSO2_CUR_POS	
R35342	Current pulse position for Low Word of PSO3 PSO3_CUR_POS	
R35343	Current pulse position for High Word of PSO3 PSO3_CUR_POS	
R35344	Pulse count remaining for output for Low Word of PSOO PSOO_REMAINING_COUNT	
R35345	Pulse count remaining for output for High Word of PSO0 PSOO_REMAINING_COUNT	R35347
R35346	Pulse count remaining for output for Low Word of PSO1 PSO1_REMAINING_COUNT High Word of PSO1 PSO1_REMAINING_COUNT	Pulse count remaining for output for Low Word of PSO2 PSO2_REMAINING_COUNT

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35349	Pulse count remaining for output for High Word of PSO2 PSO2_REMAINING_COUNT	
R35350	Pulse count remaining for output for Low Word of PSO3 PSO3_REMAINING_COUNT	
R35351	Pulse count remaining for output for High Word of PSO3 PSO3_REMAINING_COUNT	
R35352	COM1 Communication Parameters Setting COM_PARAM_P1	Set Baud Rate, Data bit... of Port 1
R35353	COM2 Communication Parameters Setting COM_PARAM_P2	Set Baud Rate, Data bit... of Port 2
R35354	COM1 \& COM2 connection setting COM_STN_CHK_P1 COM_STN_CHK_P2	- Low Byte of R35354: $=1$, Port 1 without station number checking for FATEK's external communication protocol (communicating with MMI/SCADA) $\neq 1$,Port 1 checks station number, it allows multi-drop network for data acquisition - High Byte of R35354: $=1$, Port 2 without station number checking for FATEK's external communication protocol (communicating with MMI/SCADA) $\neq 1$,Port 2 checks station number, it allows multi-drop network for data acquisition.

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35355	Communication protocol setting for COM1 and COM2 COM_PROTOCOL	Set Port1 and Port2 as the FATEK or Modbus RTU/ASCII communication protocol
R35356	Reserved	
R35357	Transmission delay and reception error detection time setting when COM1 is used as the master station COM_TX_DELAY_P1	
R35358	Transmission delay and reception error detection time setting when COM2 is used as the master station COM_TX_DELAY_P2	
R35359	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

$\begin{aligned} & \text { R35361 } \\ & \sim R 35362 \end{aligned}$	CPU Status Indication CPU_STATUS	BITO: CPU RUN or Stop BIT1: Battery Warning BIT2: System Check Code Error BIT3: Memory Card Ready display BIT4: Watch-Dog Error BIT5: Motion Control Unit Detection BIT6: PLC ID Protection BIT7: Emergency Stop BIT8: Number of expansion module exceeds the scope BIT9: System STACK Error BIT10: Resvered BIT11: Function(s) existed that CPU does not support BIT12: Resvered BIT13: Resvered BIT14: RTC Ready Indicator BIT15: System Service Error Indicator BIT16: PLC ID Setting State BIT17: Program ID Setting State BIT18: Mian Program Password Setup State BIT19: Subroutine Password Setup State BIT20: PLC Upload Password Setup State BIT21: PLC Download Password Setup State BIT22: CIC Setup State BIT23: Resvered BIT24: Resvered BIT25~29: System Check Code Error Indicator BIT30: Switch State BIT31: Resvered

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35363	PLC station number display or setup PLC_STATION_NUM	If high byte is not equal 55H, R35363 will show the station number of this PLC. When the high byte of register R35363 is equal to 55 H , the low byte of R35363 is used to set the station number of this PLC.
$\begin{aligned} & \hline \text { R35364~ } \\ & \text { R35365 } \end{aligned}$	PLC OS Version (MAJOR NOMINOR NO + PATCH NO) PLC_OS_VER_MAJOR	
R35366	Reserved	
R35367	Power ON Delay (0.01s unit) POWER_ON_DELAY	PLC is ready for I/O service after this delay time while power up. The unit is in 0.01 S . The default value is 100 .
R35368	Power Off Counter POWER_OFF_COUNTER	
R35369	Reserved	
R35370	Current Scan Time SCAN_TIME_CURRENT	1. Error < $\pm 1 \mathrm{~ms}$ 2. Re-calculate when PLC changes from
R35371	Maximum Scan Time SCAN_TIME_MAX	STOP to RUN
R35372	Minimum scan time SCAN_TIME_MIN	
R35373	Fixed Scan Time SCAN_TIME_SETTING	-
R35374	Expansion Module Heart Beat Detection (Rack 1) EXP_HEARTBEAT_RACK1	
$\begin{aligned} & \text { R35375~ } \\ & \text { R35377 } \end{aligned}$	Reserved	
R35378	Number of expansion Al points EXP_AI_POINTS	
R35379	Number of expansion AO points EXP_AO_POINTS	
R35380	Number of expansion DI points EXP_DI_POINTS	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35381	Number of expansion DO points EXP_DO_POINTS	
R35382	CPU Ethernet Port IP Address OCT1 (Leading) ETH_IP_OCT1	-
R35383	CPU Ethernet Port IP Address OCT2 ETH IP OCT2	
R35384	CPU Ethernet Port IP Address OCT3 ETH_IP_OCT3	
R35385	CPU Ethernet Port IP Address OCT4 ETH_IP_OCT4	
R35386	CPU Ethernet Port Mask OCT1 (Leading) ETH_SUBMASK_OCT1	
R35387	CPU Ethernet Port Mask OCT2 ETH_SUBMASK_OCT2	
R35388	CPU Ethernet Port Mask OCT3 ETH_SUBMASK_OCT3	
R35389	CPU Ethernet Port Mask OCT4 ETH_SUBMASK_OCT4	
R35390	CPU Ethernet Port Router OCT1 (Leading) ETH_GATEWAY_OCT1	
R35391	CPU Ethernet Port Router OCT2 ETH GATEWAY OCT2	
R35392	CPU Ethernet Port Router OCT3 ETH GATEWAY OCT3	
R35393	CPU Ethernet Port Router OCT4 ETH_GATEWAY_OCT4	
R35394	CPU Ethernet Primary DNS OCT1 (Leading) ETH_PRIM_DNS_OCT1	
R35395	CPU Ethernet Primary DNS OCT2 ETH PRIM DNS OCT2	
R35396	CPU Ethernet Primary DNS OCT3 ETH_PRIM_DNS_OCT3	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35397	CPU Ethernet Primary DNS OCT4 ETH_PRIM_DNS_OCT4	
R35398	```CPU Ethernet Secondary DNS OCT1(Leading) ETH_SEC_DNS_OCT1```	
R35399	CPU Ethernet Secondary DNS OCT2 ETH_SEC_DNS_OCT1	
R35400	CPU Ethernet Secondary DNS OCT3 ETH_SEC_DNS_OCT1	
R35401	CPU Ethernet Secondary DNS OCT4 ETH_SEC_DNS_OCT1	
R35402	Modbus: Y Starting Address MODBUS_ADDR_Y	
R35403	Modbus: Coil Starting Address MODBUS_COIL_Y	
R35404	Modbus: Corresponding Length MODBUS_TOTALS_Y	
R35405	Modbus: X Starting Address MODBUS_ADDR_X	
R35406	Modbus: Coil Starting Address MODBUS_COIL_X	
R35407	Modbus: Corresponding Length MODBUS_TOTALS_X	
R35408	Modbus: M Starting Address MODBUS_ADDR_M	
R35409	Modbus: Coil Starting Address MODBUS_COIL_M	
R35410	Modbus: Corresponding Length MODBUS_TOTALS_M	
R35411	Modbus: S Starting Address MODBUS_ADDR_S	
R35412	Modbus: Coil Starting Address MODBUS_COIL_S	
R35413	Modbus: Corresponding Length MODBUS_TOTALS_S	
R35414	Modbus: T starting address MODBUS_ADDR_T	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35415	Modbus: Coil Starting Address MODBUS_COIL_T	
R35416	Modbus: Corresponding Length MODBUS_TOTALS_T	
R35417	Modbus: C Starting Address MODBUS_ADDR_C	
R35418	Modbus: Coil Starting Address MODBUS_COIL_C	
R35419	Modbus: Corresponding Length MODBUS_TOTALS_C	
R35420	Modbus: R Starting Address MODBUS_ADDR_R	
R35421	Modbus: Holding Starting Address MODBUS_HOLDING_R	
R35422	Modbus: Corresponding Length MODBUS_TOTALS_R	
R35423	Modbus: D Starting Address MODBUS_ADDR_D	
R35424	Modbus: Holding Starting Address MODBUS_HOLDING_D	
R35425	Modbus: Corresponding Length MODBUS_TOTALS_D	
R35426	Modbus: RT Starting Address MODBUS_ADDR_RT	
R35427	Modbus: Holding Starting Address MODBUS_HOLDING_RT	
R35428	Modbus: Corresponding Length MODBUS_TOTALS_RT	
R35429	Modbus: RC Starting Address MODBUS_ADDR_RC	
R35430	Modbus: Holding Starting Address MODBUS_HOLDING_RC	
R35431	Modbus: Corresponding Length MODBUS_TOTALS_RC	
R35432	Modbus: LC Starting Address MODBUS_ADDR_DRC	
R35433	Modbus: Holding Starting Address MODBUS_HOLDING_DRC	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35434	Modbus: Corresponding Length MODBUS_TOTALS_DRC	
R35435	1ms Timer STM 0 Cycle Setting STMO_PV	
R35436	1ms Timer STM 0 Current Time STMO_CV	
R35437	1ms Timer STM 1 Cycle Setting STM1_PV	
R35438	1ms Timer STM 1 Current Time STM1_CV	
R35439	1ms Timer STM 2 Cycle Setting STM2_PV	
R35440	1ms Timer STM 2 Current Time STM2_CV	
R35441	1ms Timer STM 3 Cycle Setting STM3_PV	
R35442	1ms Timer STM 3 Current Time STM3_CV	
R35443	10 ms Timer STM 0 Cycle Setting LTMO_PV	
R35444	10 msTimer STM 0 Current Time LTMO_CV	
R35445	10 ms Timer STM 1 Cycle Setting LTM1_PV	
R35446	10 msTimer STM 1 Current Time LTM1_CV	
R35447	10 ms Timer STM 2 Cycle Setting LTM2_PV	
R35448	10 msTimer STM 2 Current Time LTM2_CV	
R35449	10 ms Timer STM 3 Cycle Setting LTM3_PV	
R35450	10 msTimer STM 3 Current Time LTM3_CV	
R35451	0.1ms Timer HST 0 Cycle Setting LOW WORD HSTO_PV	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35452	0.1 ms Timer HST 0 Cycle Setting HIGH WORD HSTO_PV	
R35453	0.1 ms Timer HST 0 Current Time LOW WORD HSTO_CV	
R35454	0.1 ms Timer HST 0 Current Time HIGH WORD HSTO_CV	
R35455	0.1 ms Timer HST 1 Cycle Setting LOW WORD HST1_PV	
R35456	0.1 ms Timer HST 1 Cycle Setting HIGH WORD HST1_PV	
R35457	0.1 ms Timer HST 1 Current Time LOW WORD HST1_CV	
R35458	0.1 ms Timer HST 1 Current Time HIGH WORD HST1_CV	
R35459	0.1 ms Timer HST 2 Cycle Setting LOW WORD HST2_PV	
R35460	0.1 ms Timer HST 2 Cycle Setting HIGH WORD HST2_PV	
R35461	0.1 ms Timer HST 2 Current Time LOW WORD HST2_CV	
R35462	0.1 ms Timer HST 2 Current Time HIGH WORD HST2_CV	
R35463	0.1 ms Timer HST 3 Cycle Setting LOW WORD HST3_PV	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35464	0.1 ms Timer HST 3 Cycle Setting HIGH WORD HST3_PV	
R35465	$\begin{aligned} & \text { 0.1ms Timer HST } 3 \text { Current Time LOW } \\ & \text { WORD } \\ & \text { HST3_CV } \end{aligned}$	
R35466	0.1 ms Timer HST 3 Current Time HIGH WORD HST3_CV	
R35467	$\begin{aligned} & 0.1 \mathrm{~ms} \text { HSTA HSTA Current Count LOW } \\ & \text { WORD } \\ & \text { HSTA_CV } \end{aligned}$	
R35468	0.1 ms HSTA HSTA Current Count HIGH WORD HSTA_CV	
$\begin{aligned} & \text { R35469- } \\ & \text { R35478 } \end{aligned}$	It is used for designating the Data Register that should be replicated in the SD Card for reading, and the user needs to create such field before replicating the SD Card. After turning on the PC, it will execute the required action according to SR18~SR27 that have been replicated in the SD Card. $\begin{aligned} & \text { SD_GROUP_FLAG } \\ & \text { SD_GROUP_COUNT } \\ & \text { SD_GROUP_LEN1 } \\ & \text { SD_GROUP_ADDR1 } \\ & \text { SD_GROUP_LEN2 } \\ & \text { SD_GROUP_ADDR2 } \\ & \text { SD_GROUP_LEN3 } \\ & \text { SD_GROUP_ADDR3 } \\ & \text { SD_GROUP_LEN4 } \\ & \text { SD_GROUP_ADDR4 } \end{aligned}$	When using ROM Pack to save the Ladder program and the data register, this table should be used to determine the registers that should be replicated. When turning on the PC, it will be read by ROM Pack for executing the required initialization procedure.

R35479	Control the register to be read by SD Card. Determine if the data register in the PACK should be read when turning on the PC. SD_GROUP_LOAD_FLAG	$=5530 \mathrm{H}$: When turning on the PC, it will not read the data register that has been replicated to ROM Pack. = Other value: When turning on the PC, the content of the data register being replicated to ROM Pack will be initialized as the value when the register is replicated.
R35480	Test-run modification mode or replicate the SD Card related command and the state SD_STATE	
R35481	User-defined TCP port of Fatek binary server ETH_FATEK_CUSTOM_PORT	
R35482	User-defined TCP port of Modbus TCP server ETH_MODBUS_CUSTOM_PORT	
R35483	iMonitor Connection Status IMONITOR_STATUS	0: Offline 1: Online 2: Connecting Others: Error code
$\begin{array}{\|l\|} \hline \text { R35484- } \\ \text { R35643 } \end{array}$	SOCKET online setting TCP: 10 * 8 online UDP: 10 * 8 online	
R35644	SD Operation Information Word Group High byte: State Code Low byte: Operation Code SD_OPERATION_STATUS	
R35645	Build-in Analog Input Channel 0 Read Value (M2 Type) PLC_AIO	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35646	Build-in Analog Input Channel 1 Read Value (M2 Type) PLC_Al1			
R35647	Error code of PSO 4 PSO4_ERR_CODE			
R35648	Error code of PSO 5 PSO5_ERR_CODE			
R35649	Error code of PSO 6 PSO6_ERR_CODE			
R35650	Error code of PSO 7 PSO7_ERR_CODE	Completed step number of positioning program for PSO4 PSO4_DN_STEP_NUM		
R35651	Completed step number of positioning program for PSO5 PSO5_DN_STEP_NUM			
R35652	Completed step number of positioning program for PSO6 PSO6_DN_STEP_NUM			
R35653	Completed step number of positioning program for PSO7 PSO7_DN_STEP_NUM PSO7_CUR_FREQ			
RSO6_CUR_FREQ			\quad	R3565
:---				

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35662	Output frequency for High Word of PSO7 PSO7_CUR_FREQ	
R35663	Current pulse position for Low Word of PSO4 PSO4_CUR_POS	
R35664	Current pulse position for High Word of PSO4 PSO4_CUR_POS	
R35665	Current pulse position for Low Word of PSO5 PSO5_CUR_POS	
R35666	Current pulse position for High Word of PSO5 PSO5_CUR_POS	
R35667	Current pulse position for Low Word of PSO6 PSO6_CUR_POS	
R35668	Current pulse position for High Word of PSO6 PSO6_CUR_POS	
R35669	Current pulse position for Low Word of PSO7 PSO7_CUR_POS	
R35675	Current pulse position for High Word of PSO7 PSO7_CUR_POS	
R35670	Pulse count remaining for output for Low Word of PSO6 PSO6_REMAINING_COUNT	
R35671	Pulse count remaining for output for Low Word of PSO4	
Pulse count remaining for output for High Word of PSO4	Pulse count remaining for output for Low Word of PSO5 PSO5_REMAINING_COUNT	
	Pulse count remaining for output for	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R35676	Pulse count remaining for output for High Word of PSO6 PSO6_REMAINING_COUNT	
R35677	Pulse count remaining for output for Low Word of PSO7 PSO7_REMAINING_COUNT	
R35678	Pulse count remaining for output for High Word of PSO7 PSO7_REMAINING_COUNT	
R35679	MQTT Connection Status	MQTT_CONNECT_ACCEPTED $=0$, MQTT_CONNECT_REFUSED_PROTOCOL_VE $\mathrm{RSION}=1$, MQTT_CONNECT_REFUSED_IDENTIFIER $=2$, MQTT_CONNECT_REFUSED_SERVER = 3, MQTT_CONNECT_REFUSED_USERNAME_PA SS = 4, MQTT_CONNECT_REFUSED_NOT_AUTHORI ZED_= 5 , MQTT_CONNECT_DISCONNECTED $=256$, MQTT_CONNECT_TIMEOUT $=257$
$\begin{aligned} & \text { R35680~ } \\ & \text { R35760 } \end{aligned}$	Reserved	
R35761	Able to dynamically change the highspeed pulse output frequency	
$\begin{aligned} & \text { R35762~ } \\ & \text { R35871 } \end{aligned}$	Reserved	
$\begin{aligned} & \text { R35872~ } \\ & \text { R36871 } \end{aligned}$	Starting register of expansion module status	
$\begin{aligned} & \text { R36872~ } \\ & \text { R36879 } \end{aligned}$	TEST RUN Reserve Register (Read-Only)	
$\begin{aligned} & \text { R36880~ } \\ & \text { R43193 } \end{aligned}$	For Motion related special Registers	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R43194~	PO (R43194), Reserved(R43195),	
R43213	P1(R43196), Reserved(R43197),	
	P2(R43198), ... P9 (R43212), Reserved(R43213)	
R43214	V INDEX_V	
R43216	Z INDEX_Z	

2-5 Motion Special Relay Details

Rel ay	System Tag Symbol	Function	Description
M10520	ALL_SERVO_ ON	All axes: Servo ON	Rising: All axes Servo on Falling: All axes Servo off
M10521	ALL_FAULT_ RESET	All axes: Servo Reset	Rising: All axes clear error
M10522		Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10611		Axis 1: Auxiliary	High Pos: On Low Pos: Off
M10612		Axis 1: Auxiliary	High Pos: On Low Pos: Off
M10613		Axis 1: Auxiliary	High Pos: On Low Pos: Off
M10614		Reserved	
M10615		Reserved	
M10616		Reserved	
M10617		Axis 1: Axis Probe 1	High Pos: On Low Pos: Off
M10618		Axis 1: Axis	Rising Trigger
M10619		Axis 1: Axis Probe 2	High Pos: On Low Pos: Off
M10620		Axis 1: Axis Probe 2	Rising Trigger
M10621		Axis 1: Axis Synchronizat ion	High Pos: On Low Pos: Off
M10622		Axis 1: Axis Synchronizat ion	High Pos: On Low Pos: Off
M10623		Axis 1: Axis Syncronizati	High Pos: On Low Pos: Off
M10624		Axis 1: Initialization of the Cam	High Pos: On Low Pos: Off
M10625		Reserved	
M11240	AX1_SERVO _IS_ON	Axis 1: Servo On	High Pos: Servo On Low Pos: Servo Off
M11241	$\begin{aligned} & \text { AX1_OP_RE } \\ & \text { ADY } \end{aligned}$	Axis 1: Operation	High Pos: Ready Low Pos: Not Ready
M11242	AX1_IN_ERR	Axis 1: Axis error in	High Pos: In Error Low Pos: No Error
M11243	$\begin{aligned} & \text { AX1_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 1: Axis warning in progress	High Pos: In Warning Low Pos: No Warning

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11244	$\begin{aligned} & \text { AX1_IN_CTR } \\ & \text { L } \end{aligned}$	Axis 1: Control in	High Pos: In Control Low Pos: No Control
M11245	$\begin{aligned} & \text { AX1_IN_HO } \\ & M \end{aligned}$	Axis 1 : Homing in progress	High Pos: Homing Mode Low Pos: Homing Mode Done
M11246	$\begin{aligned} & \text { AX1_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 1: Homing	High Pos: Homing Mode Done
M11247	$\begin{aligned} & \text { AX1_IN_POS } \\ & \text { I } \end{aligned}$	Axis 1: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning Mode Done
M11248	$\begin{aligned} & \text { AX1_POSI_D } \\ & \text { N } \end{aligned}$	Axis 1: Positioning	High Pos: Positioning Mode Done
M11249	AX1_IN_JOG	Axis 1: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode Done
M11250	$\begin{aligned} & \text { AX1_JOG_D } \\ & N \end{aligned}$	Axis 1: JOG done	High Pos: JOG Mode Done
M11251	$\begin{aligned} & \text { AX1_IN_SYN } \\ & C \end{aligned}$	Axis 1 : Synchronizin g in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch
M11252	$\begin{aligned} & \text { AX1_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 1 : Synchronizin g on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11253		Axis 1: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode
M11254		Axis 1: Speed mode done	High Pos: Reaching target speed/Reaching
M11255		Axis 1: Torque mode in	High Pos: Torque Mode Low Pos: Torque
M11256		Axis 1 : Torque mode done	High Pos: Reaching target torque/Reaching

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11257		Axis 1: Forward	High Pos: State On Low Pos: State Off
M11258		Axis 1: Reverse	High Pos: State On Low Pos: State Off
M11259		Axis 1: Starting point limit switch state	High Pos: State On Low Pos: State Off
M11260		Axis 1: Position	High Pos: State On Low Pos: State Off
M11261		Axis 1: Negative	High Pos: State On Low Pos: State Off
M11262		Axis 1: Axis Probe 1	High Pos: State On Low Pos: State Off
M11263		Axis 1: Axis Probe 2	High Pos: State On Low Pos: State Off
M11264		Axis 1: Axis synchronizat	High Pos: Effective
M11265		Axis 1: Axis tracking	High Pos: Triggered
M11266 M11279		Reserved	
M10640	$\begin{aligned} & \text { AX2_SERVO } \\ & \text { _ON } \end{aligned}$	Axis 2: Axis control	Rising: Servo On Falling: Servo Off
M10641	AX2_FAULT_ RST	Axis 2: Axis control nnmmصnص.	Rising: Single axis clear error
M10642	$\begin{aligned} & \text { AX2_DEC_ST } \\ & \text { OP } \end{aligned}$	Axis 2: Axis control command:	Rising: Single axis deceleration stop
M10643	$\begin{aligned} & \text { AX2_EMG_S } \\ & \text { TOP } \end{aligned}$	Axis 2: Axis control command:	Rising: Single axis emergency stop
M10644	$\begin{aligned} & \text { AX2_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 2: Synchronous	High Pos: On Low Pos: Off
M10645	$\begin{aligned} & \text { AX2_ORG_SI } \\ & \text { G } \end{aligned}$	Axis 2: Origin signal	High Pos: On Low Pos: Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

$\left.$| M10646 | AX2_POST_S
 IG | Axis 2:
 Positive
 lianal | High Pos: On
 Low Pos: Off |
| :--- | :--- | :--- | :--- |
| M10647 | AX2_NEG_SI
 G | Axis 2:
 Negative | High Pos: On
 Low Pos: Off |
| M10648 | AX2_Z_SIG | Axis 2: Z
 count signal | High Pos: On
 Low Pos: Off |
| M10649 | AX2_SYNC_
 ON_DIS | Axis 2:
 Synchronous | High Pos: On
 Low Pos: Off |
| M10650 | AX2_SYNC_
 OFF_DIS | Axis 2:
 Synchronous | High Pos: On
 Low Pos: Off |
| M10651 | | Axis 2:
 Auxiliary | High Pos: On
 Low Pos: Off |
| M10652 | | Axis 2:
 Auxiliary | High Pos: On
 Low Pos: Off |
| M10653 | | Axis 2: | |
| Auxiliary | | | |\quad| High Pos: On |
| :--- |
| Low Pos: Off | \right\rvert\, | M10654 | | Reserved |
| :--- | :--- | :--- |

M10662		Axis 2: Axis synchronizat ion parameter valid request in the next cycle	High Pos: On Low Pos: Off		
M10663		Axis 2: Axis Synchronize d Clutch Edge Trigger	High Pos: On Low Pos: Off		
M10664		Axis 2: Initialization of the cam phase when	High Pos: On Low Pos: Off		
M10665		Reserved		\quad	R10:
:---					

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11290	AX2_JOG_D	Axis 2: JOG	High Pos: JOG Mode
M11291	$\begin{aligned} & \text { AX2_IN_SYN } \\ & C \end{aligned}$	Axis 2: Synchronous in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch connection/disengage
M11292	$\begin{aligned} & \text { AX2_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 2: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11293		Axis 2: Speed mode	High Pos: Speed Mode
M11294		Axis 2: Speed mode done	High Pos: Reaching target speed/Reaching speed upper limit
M11295		Axis 2: Torque mode in progress	High Pos: Torque Mode Low Pos: Torque Mode Done
M11296		Axis 2: Torque mode done	High Pos: Reaching target torque/Reaching torque upper limit
M11297		Axis 2: Forward	High Pos: State On Low Pos: State Off
M11298		Axis 2: Reverse	High Pos: State On Low Pos: State Off
M11299		Axis 2: Starting	High Pos: State On Low Pos: State Off
M11300		Axis 2: Positive limit	High Pos: State On Low Pos: State Off
M11301		Axis 2: Negative	High Pos: State On Low Pos: State Off
M11302		Axis 2: Axis Probe 1	High Pos: State On Low Pos: State Off
M11303		Axis 2: Axis Probe 2	High Pos: State On Low Pos: State Off

M11304		Axis 2: Axis synchronizat ion parameter	High Pos: Effective
M11305		Axis 2: Axis tracking	High Pos: Triggered
M11303 M11319		Reserved	
M10680	$\begin{aligned} & \text { AX3_SERVO } \\ & \text { _ON } \end{aligned}$	Axis 3: Axis control	Rising: Single axis Servo on
M10681	AX3_FAULT_ RST	Axis 3: Axis control	Rising: Single axis clear error
M10682	AX3_DEC_ST OP	Axis 3: Axis control command:	Rising: Single axis deceleration stop
M10683	$\begin{aligned} & \text { AX3_EMG_S } \\ & \text { TOP } \end{aligned}$	Axis 3: Axis control command:	Rising: Single axis emergency stop
M10684	$\begin{aligned} & \text { AX3_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 3: Synchronous	High Pos: On Low Pos: Off
M10685	$\begin{aligned} & \text { AX3_ORG_SI } \\ & \text { G } \end{aligned}$	Axis 3 : Origin signal	High Pos: On Low Pos: Off
M10686	$\begin{aligned} & \text { AX3_POST_S } \\ & \text { IG } \end{aligned}$	Axis 3: Positive	High Pos: On Low Pos: Off
M10687	$\begin{aligned} & \text { AX3_NEG_SI } \\ & \text { G } \end{aligned}$	Axis 3: Negative	High Pos: On Low Pos: Off
M10688	AX3_Z_SIG	Axis 3: Z count signal	High Pos: On Low Pos: Off
M10689	$\begin{aligned} & \text { AX3_SYNC_ } \\ & \text { ON_DIS } \end{aligned}$	Axis 3 Synchronous	High Pos: On Low Pos: Off
M10690	$\begin{aligned} & \text { AX3_SYNC_ } \\ & \text { OFF_DIS } \end{aligned}$	Axis 3: Synchronous	High Pos: On Low Pos: Off
M10691		Axis 3: Auxiliary	High Pos: On Low Pos: Off
M10692		Axis 3: Auxiliary	High Pos: On Low Pos: Off
M10693		Axis 3: Auxiliary	High Pos: On Low Pos: Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10694		Reserved	
M10695		Reserved	
M10696		Reserved	
M10697		Axis 3: Axis Probe 1	High Pos: On Low Pos: Off
M10698		Axis 3: Axis Probe 1	Rising Triggered
M10699		Axis 3: Axis Probe 2	High Pos: On Low Pos: Off
M10700		Axis 3: Axis Probe 2	Rising Triggered
M10701		Axis 3: Axis synchronous parameter immediate	High Pos: On Low Pos: Off
M10702		Axis 3: Axis synchronizat ion parameter valid request	High Pos: On Low Pos: Off
M10703		Axis 3: Axis Synchronize d Clutch Edge Trigger	High Pos: On Low Pos: Off
M10704		Axis 3: Initialization of the cam phase when	High Pos: On Low Pos: Off
M10705 M10719		Reserved	
M11320	$\begin{aligned} & \text { AX3_SERVO } \\ & \text { _IS_ON } \end{aligned}$	Axis 3: Servo On	High Pos: Servo On Low Pos: Servo Off
M11321	$\begin{aligned} & \text { AX3_OP_RE } \\ & \text { ADY } \end{aligned}$	Axis 3: Operation	High Pos: Ready Low Pos: Not Ready

M11322	AX3_IN_ERR	Axis 3: Axis error in	High Pos: In Error Low Pos: No Error
M11323	$\begin{aligned} & \text { AX3_IN_WA } \\ & \text { RN } \end{aligned}$	nrooroce Axis 3: Axis warning in	High Pos: In Warning Low Pos: No Warning
M11324	$\begin{aligned} & \text { AX3_IN_CTR } \\ & \text { L } \end{aligned}$	Axis 3: Control in	High Pos: In Control Low Pos: No Control
M11325	$\begin{aligned} & \text { AX3_IN_HO } \\ & M \end{aligned}$	Axis 3: Homing in progress	High Pos: Homing Mode Low Pos: Homing
M11326	$\begin{aligned} & \text { AX3_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 3: Homing	High Pos: Homing Mode Done
M11327	AX3_IN_POS	Axis 3: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11328	$\begin{aligned} & \text { AX3_POSI_D } \\ & \mathrm{N} \end{aligned}$	Axis 3: Positioning done	High Pos: Positioning Mode Done
M11329	AX3_IN_JOG	Axis 3: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11330	AX3_JOG_D	Axis 3: JOG	High Pos: JOG Mode
M11331	$\begin{aligned} & \text { AX3_IN_SYN } \\ & C \end{aligned}$	Axis 3: Synchronous in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch
M11332	$\begin{aligned} & \text { AX3_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 3: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11333		Axis 3: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode
M11334		Axis 3: Speed mode done	High Pos: Reaching target speed/Reaching
M11335		Axis 3: Torque mode in	High Pos: Torque Mode Low Pos: Torque

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11336		Axis 3: Torque mode done	High Pos: Reaching target torque/Reaching		
M11337		Axis 3: Forward	High Pos: State On Low Pos: State Off		
M11338		Axis 3: Reverse	High Pos: State On Low Pos: State Off		
M11339		Axis 3: Starting	High Pos: State On Low Pos: State Off		
M11340		Axis 3: Positive limit	High Pos: State On Low Pos: State Off		
M11341		Axis 3: Negative	High Pos: State On Low Pos: State Off		
M11342		Axis 3: Axis Probe 1	High Pos: State On Low Pos: State Off		
M11343		Probe 2 triggered	High Pos: State On Low Pos: State Off		
M11344		Axis 3: Axis synchronizat ion parameter	High Pos: Effective		
M10722	AX4_DEC_ST				
OP	Axis 3: Axis tracking	High Pos: Triggered			
command:					
Deceleration					
stop				\quad	Reserved
:---					
M10720					

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10723	$\begin{aligned} & \text { AX4_EMG_S } \\ & \text { TOP } \end{aligned}$	Axis 4: Axis control command: Emergency	Rising: Single axis emergency stop
M10724	$\begin{aligned} & \text { AX4_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 4: Synchronous	High Pos: On Low Pos: Off
M10725	$\begin{aligned} & \text { AX4_ORG_SI } \\ & \text { G } \end{aligned}$	Axis 4 Origin signal	High Pos: On Low Pos: Off
M10726	$\begin{aligned} & \text { AX4_POST_S } \\ & \text { IG } \end{aligned}$	Axis 4: Positive	High Pos: On Low Pos: Off
M10727	$\begin{aligned} & \text { AX4_NEG_SI } \\ & \text { G } \end{aligned}$	Axis 4: Negative	High Pos: On Low Pos: Off
M10728	AX4_Z_SIG	Axis 4: Z count signal	High Pos: On Low Pos: Off
M10729	$\begin{aligned} & \text { AX4_SYNC_ } \\ & \text { ON_DIS } \end{aligned}$	Axis 4 Synchronous	High Pos: On Low Pos: Off
M10730	AX4_SYNC_ OFF_DIS	Axis 4 Synchronous	High Pos: On Low Pos: Off
M10731		Axis 4: Auxiliary	
M10732		Axis 4: Auxiliary	
M10733		Axis 4: Auxiliary	
M10734		Reserved	
M10735		Reserved	
M10736		Reserved	
M10737		Axis 4: Axis Probe 1 Function ON	High Pos: On Low Pos: Off
M10738		Axis 4: Axis Probe 1 Function	Rising Triggered
M10739		Axis 4: Axis Probe 2 Function ON	High Pos: On Low Pos: Off

M10740		Axis 4: Axis Probe 2	Rising Triggered
M10741		Axis 4: Axis synchronous parameter immediate effect	High Pos: On Low Pos: Off
M10742		Axis 4: Axis synchronizat ion parameter valid request	High Pos: On Low Pos: Off
M10743		Axis 4: Axis Synchronize d Clutch Edge Trigger Buffer ON	High Pos: On Low Pos: Off
M10744		Axis 4: Initialization of the cam phase when the axis synchronous	High Pos: On Low Pos: Off
M10745 M10759		Reserved	
M11360	$\begin{aligned} & \text { AX4_SERVO } \\ & \text { _IS_ON } \end{aligned}$	Axis 4: Servo On	High Pos: Servo On Low Pos: Servo Off
M11361	AX4_OP_RE ADY	Axis 4: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11362	AX4_IN_ERR	Axis 4: Axis error in	High Pos: In Error Low Pos: No Error
M11363	$\begin{aligned} & \text { AX4_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 4: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11364		Axis 4: Control in	High Pos: In Control Low Pos: No Control

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11365	$\begin{aligned} & \text { AX4_IN_HO } \\ & \mathrm{M} \end{aligned}$	Axis 4: Homing in	High Pos: Homing Mode
M11366	$\begin{aligned} & \text { AX4_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 4: Homing	High Pos: Homing Mode Done
M11367	$\begin{aligned} & \text { AX4_IN_POS } \\ & \text { I } \end{aligned}$	Axis 4: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11368	$\begin{aligned} & \text { AX4_POSI_D } \\ & \mathrm{N} \end{aligned}$	Axis 4: Positioning done	High Pos: Positioning Mode Done
M11369	AX4_IN_JOG	Axis 4: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11370	AX4_JOG_D	Axis 4: JOG	High Pos: JOG Mode
M11371	$\begin{aligned} & \text { AX4_IN_SYN } \\ & \text { C } \end{aligned}$	Axis 4: Synchronous in progress	High Pos: clutch connecting/disengagi ng
M11372	$\begin{aligned} & \text { AX4_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 4: Synchronous	High Pos: Clutch connection complete
M11373		Axis 4: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode
M11374		Axis 4: Speed mode	High Pos: Reaching target
M11375		Axis 4 : Torque mode in	High Pos: Torque Mode Low Pos: Torque
M11376		Axis 4: Torque	High Pos: Reaching target
M11377		Axis 4: Forward software	High Pos: State On Low Pos: State Off
M11378		Axis 4: Reverse software	High Pos: State On Low Pos: State Off
M11379		Axis 4: Starting point limit	High Pos: State On Low Pos: State Off
M11380		Axis 3: Positive limit switch state	High Pos: State On Low Pos: State Off

M11381		Axis 4: Negative limit switch	High Pos: State On Low Pos: State Off
M11382		Axis 4: Axis Probe 1 triggered	High Pos: State On Low Pos: State Off
M11383		Axis 4: Axis Probe 2 triggered	High Pos: State On Low Pos: State Off
M11384		Axis 4: Axis synchronizat ion parameter effertive	High Pos: Effective
M11385		Axis 4: Axis tracking error state	High Pos: Triggered
M11386 M11399		Reserved	
M10760	$\begin{aligned} & \text { AX5_SERVO } \\ & \text { _ON } \end{aligned}$	Axis 5: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M10761	AX5_FAULT_ RST	Axis 5: Axis control command: Error reset	Rising: Single axis clear error
M10762	$\begin{aligned} & \text { AX5_DEC_ST } \\ & \text { OP } \end{aligned}$	Axis 5: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M10763	$\begin{aligned} & \text { AX5_EMG_S } \\ & \text { TOP } \end{aligned}$	Axis 5: Axis control command: Emergency	Rising: Single axis emergency stop
M10764	$\begin{aligned} & \text { AX5_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 5: Synchronous	High Pos: On Low Pos: Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10765	AX5_ORG_SI G	Axis 5: Origin signal	High Pos: On Low Pos: Off
M10766	AX5_POST_S IG	Axis 5: Positive	High Pos: On Low Pos: Off
M10767	AX5_NEG_SI G	Axis 5: Negative	High Pos: On Low Pos: Off
M10768	AX5_Z_SIG	Axis 5: Z count signal	High Pos: On Low Pos: Off
M10769	AX5_SYNC_ ON_DIS	Axis 5: Synchronous	High Pos: On Low Pos: Off
M10770	AX5_SYNC_ OFF_DIS	Axis 5: Synchronous	High Pos: On Low Pos: Off
M10771		Axis 5: Auxiliary	High Pos: On Low Pos: Off
M10773		Axis 5: Auxiliary	High Pos: On Low Pos: Off
M10781		Axis 5: Auxiliary	High Pos: On Low Pos: Off
M10774		Reserved	
M10775		Reserved M10779 immediate effect	Rasameter Synch

M10782		Axis 5: Axis synchronizat ion parameter valid request	High Pos: On Low Pos: Off
M10783		Axis 5: Axis Synchronize d Clutch Edge Trigger Buffer ON	High Pos: On Low Pos: Off
M10784		Axis 5: Initialization of the cam phase when the axis synchronous	High Pos: On Low Pos: Off
M10785 M10799		Reserved	
M11400	$\begin{aligned} & \text { AX5_SERVO } \\ & \text { IS_ON } \\ & \hline \end{aligned}$	Axis 5: Servo On	High Pos: Servo On Low Pos: Servo Off
M11401	$\begin{aligned} & \text { AX5_OP_RE } \\ & \text { ADY } \end{aligned}$	Axis 5: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11402	AX5_IN_ERR	Axis 5: Axis error in	High Pos: In Error Low Pos: No Error
M11403	$\begin{aligned} & \text { AX5_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 5: Axis warning in	High Pos: In Warning Low Pos: No Warning
M11404	$\begin{aligned} & \text { AX5_IN_CTR } \\ & \text { L } \end{aligned}$	Axis 5: Control in	High Pos: In Control Low Pos: No Control
M11405	$\begin{aligned} & \text { AX5_IN_HO } \\ & \text { M } \end{aligned}$	Axis 5: Homing in	High Pos: Homing Mode
M11406	$\begin{aligned} & \text { AX5_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 5: Homing	High Pos: Homing Mode Done
M11407	$\begin{aligned} & \text { AX5_IN_POS } \\ & \text { । } \end{aligned}$	Axis 5: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11408	$\begin{aligned} & \text { AX5_POSI_D } \\ & N \end{aligned}$	Axis 5: Positioning	High Pos: Positioning Mode Done

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11409	AX5_IN_JOG	Axis 5: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11410	$\begin{aligned} & \text { AX5_JOG_D } \\ & \mathrm{N} \end{aligned}$	Axis 5: JOG done	High Pos: JOG Mode Done
M11411	AX5_IN_SYN C	Axis 5: Synchronous in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch connection/disengage
M11412	AX5_SYNC_ ON	Axis 5: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11413		Axis 5: Speed mode	High Pos: Speed Mode
M11414		Axis 5: Speed mode done	High Pos: Reaching target speed/Reaching
M11415		Axis 5: Torque	High Pos: Torque Mode
M11416		Axis 5: Torque	High Pos: Reaching target
M11417		Axis 5: Forward	High Pos: State On Low Pos: State Off
M11418		Axis 5: Reverse coftinara	High Pos: State On Low Pos: State Off
M11419		Axis 5: Starting	High Pos: State On Low Pos: State Off
M11420		Axis 5: Positive limit	High Pos: State On Low Pos: State Off
M11421		Axis 5: Negative	High Pos: State On Low Pos: State Off
M11422		Axis 5: Axis Probe 1	High Pos: State On Low Pos: State Off
M11423		Axis 5: Axis Probe 2	High Pos: State On Low Pos: State Off

M11424		Axis 5: Axis synchronizat ion parameter	High Pos: Effective
M11425		Axis 5: Axis tracking	High Pos: Triggered
M11426 M11439		Reserved	
M10800	AX6_SERVO _ON	Axis 6: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M10801	AX6_FAULT_ RST	Axis 6: Axis control command:	Rising: Single axis clear error
M10802	AX6_DEC_ST OP	Axis 6: Axis control command: Dereleration	Rising: Single axis deceleration stop
M10803	$\begin{aligned} & \text { AX6_EMG_S } \\ & \text { TOP } \end{aligned}$	Axis 6: Axis control command:	Rising: Single axis emergency stop
M10804	$\begin{aligned} & \text { AX6_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 6: Synchronous	High Pos: On Low Pos: Off
M10805	$\begin{aligned} & \text { AX6_ORG_SI } \\ & \text { G } \end{aligned}$	Axis 6: Origin signal	High Pos: On Low Pos: Off
M10806	$\begin{aligned} & \text { AX6_POST_S } \\ & \text { IG } \end{aligned}$	Axis 6: Positive	High Pos: On Low Pos: Off
M10807	$\begin{aligned} & \text { AX6_NEG_SI } \\ & \text { G } \end{aligned}$	Axis 6: Negative	High Pos: On Low Pos: Off
M10808	AX6_Z_SIG	Axis 6: Z count signal	High Pos: On Low Pos: Off
M10809	$\begin{aligned} & \text { AX6_SYNC_ } \\ & \text { ON_DIS } \end{aligned}$	Axis 6: Synchronous	High Pos: On Low Pos: Off
M10810	$\begin{aligned} & \text { AX6_SYNC_ } \\ & \text { OFF_DIS } \end{aligned}$	Axis 6: Synchronous	High Pos: On Low Pos: Off
M10811		Axis 6: Auxiliary	High Pos: On Low Pos: Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10812	Axis 6: Auxiliary	High Pos: On Low Pos: Off
M10813	Axis 6: Auxiliary	High Pos: On Low Pos: Off
M10814	Reserved	
M10815	Reserved	
M10816	Reserved	
M10817	Axis 6: Axis Probe 1	High Pos: On Low Pos: Off
M10818	Axis 6: Axis Probe 1	Rising Triggered
M10819	Axis 6: Axis Probe 2	High Pos: On Low Pos: Off
M10820	Axis 6: Axis Probe 2	Rising Triggered
M10821	Axis 6: Axis synchronous parameter immediate effect	High Pos: On Low Pos: Off
M10822	Axis 6: Axis synchronizat ion parameter valid request	High Pos: On Low Pos: Off
M10823	Axis 6: Axis Synchronize d Clutch Edge Trigger	High Pos: On Low Pos: Off
M10824	Axis 6: Initialization of the cam phase when the axis	High Pos: On Low Pos: Off
M10825 M10839	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11440	AX6_SERVO _IS_ON	Axis 6: Servo On	High Pos: Servo On Low Pos: Servo Off
M11441	AX6_OP_RE ADY	Axis 6: Operation	High Pos: Ready Low Pos: Not Ready
M11442	AX6_IN_ERR	Axis 6: Axis error in	High Pos: In Error Low Pos: No Error
M11443	$\begin{aligned} & \text { AX6_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 6: Axis warning in nraaroce	High Pos: In Warning Low Pos: No Warning
M11444	$\begin{aligned} & \text { AX6_IN_CTR } \\ & \text { L } \end{aligned}$	Axis 6: Control in	High Pos: In Control Low Pos: No Control
M11445	$\begin{aligned} & \text { AX6_IN_HO } \\ & M \end{aligned}$	Axis 6: Homing in	High Pos: Homing Mode
M11446	$\begin{aligned} & \text { AX6_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 6: Homing	High Pos: Homing Mode Done
M11447	AX6_IN_POS I	Axis 6: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11448	$\begin{aligned} & \text { AX6_POSI_D } \\ & \mathrm{N} \end{aligned}$	Axis 6: Positioning	High Pos: Positioning Mode Done
M11449	AX6_IN_JOG	Axis 6: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11450	AX6_JOG_D	Axis 6: JOG	High Pos: JOG Mode
M11451	AX6_IN_SYN C	Axis 6: Synchronous	High Pos: clutch connecting/disengagi
M11452	AX6_SYNC_ ON	Axis 6: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11453		Axis 6: Speed mode	High Pos: Speed Mode
M11454		Axis 6: Speed mode done	High Pos: Reaching target speed/Reaching
M11455		Axis 6: Torque mode in	High Pos: Torque Mode Low Pos: Torque

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11456		Axis 6: Torque mode done	High Pos: Reaching target torque/Reaching
M11457		Axis 6: Forward software limit state	High Pos: State On Low Pos: State Off
M11458		Axis 6: Reverse software	High Pos: State On Low Pos: State Off
M11459		Axis 6: Starting	High Pos: State On Low Pos: State Off
M11460		Axis 6: Positive limit	High Pos: State On Low Pos: State Off
M11461		Axis 6: Negative	High Pos: State On Low Pos: State Off
M11462		Axis 6: Axis Probe 1	High Pos: State On Low Pos: State Off
M11463		Axis 6: Axis Probe 2	High Pos: State On Low Pos: State Off
M11464		Axis 6: Axis synchronizat ion parameter	High Pos: Effective
M11465		Axis 6: Axis tracking	High Pos: Triggered
M11466 M11479		Reserved	
M10840	$\begin{aligned} & \text { AX7_SERVO } \\ & \text { _ON } \end{aligned}$	Axis 7: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M10841	$\begin{aligned} & \text { AX7_FAULT_ } \\ & \text { RST } \end{aligned}$	Axis 7: Axis control command: Error reset	Rising: Single axis clear error

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10842	AX7_DEC_ST OP	Axis 7: Axis control command: Deceleration	Rising: Single axis deceleration stop
M10843	AX7_EMG_S TOP	Axis 7: Axis control command: Emergency	Rising: Single axis emergency stop
M10844	AX7_SYNC_ ON	Axis 7: Synchronous	High Pos: On Low Pos: Off
M10845	AX7_ORG_SI G	Axis 7: Origin signal	High Pos: On Low Pos: Off
M10846	AX7_POST_S IG	Axis 7: Positive	High Pos: On Low Pos: Off
M10847	AX7_NEG_SI G	Axis 7: Negative	High Pos: On Low Pos: Off
M10848	AX7_Z_SIG	Axis 7: Z count signal	High Pos: On Low Pos: Off
M10849	AX7_SYNC_ ON_DIS	Axis 7 Synchronous	High Pos: On Low Pos: Off
M10850	AX7_SYNC_ OFF_DIS	Axis 7: Synchronous	High Pos: On Low Pos: Off
M10851	Mrobe 1		

M10859		Axis 7: Axis Probe 2	High Pos: On Low Pos: Off
M10860		Axis 7: Axis Probe 2	Rising Triggered
M10861		Axis 7: Axis synchronous parameter immediate effect	High Pos: On Low Pos: Off
M10862		Axis 7: Axis synchronizat ion parameter valid request	High Pos: On Low Pos: Off
M10863		Axis 7: Axis Synchronize d Clutch Edge Trigger	High Pos: On Low Pos: Off
M10864		Axis 7: Initialization of the cam phase when the axis synchronous	High Pos: On Low Pos: Off
M10865 M10879		Reserved	
M11480	$\begin{aligned} & \text { AX7_SERVO } \\ & \text { _IS_ON } \end{aligned}$	Axis 7: Servo On	High Pos: Servo On Low Pos: Servo Off
M11481	$\begin{aligned} & \text { AX7_OP_RE } \\ & \text { ADY } \end{aligned}$	Axis 7: Operation	High Pos: Ready Low Pos: Not Ready
M11482	AX7_IN_ERR	Axis 7: Axis error in	High Pos: In Error Low Pos: No Error
M11483	$\begin{aligned} & \text { AX7_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 7: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11484	$\begin{aligned} & \text { AX7_IN_CTR } \\ & \text { L } \end{aligned}$	Axis 7: Control in	High Pos: In Control Low Pos: No Control

M11485	$\begin{aligned} & \text { AX7_IN_HO } \\ & \mathrm{M} \end{aligned}$	Axis 7: Homing in progress	High Pos: Homing Mode Low Pos: Homing
M11486	$\begin{aligned} & \text { AX7_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 7: Homing	High Pos: Homing Mode Done
M11487	AX7_IN_POS	Axis 7: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11488	$\begin{aligned} & \text { AX7_POSI_D } \\ & \mathrm{N} \end{aligned}$	Axis 7: Positioning	High Pos: Positioning Mode Done
M11489	AX7_IN_JOG	Axis 7: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11490	$\begin{aligned} & \text { AX7_JOG_D } \\ & \mathrm{N} \end{aligned}$	Axis 7: JOG done	High Pos: JOG Mode Done
M11491	$\begin{aligned} & \text { AX7_IN_SYN } \\ & C \end{aligned}$	Axis 7: Synchronous in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch
M11492	$\begin{aligned} & \text { AX7_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 7: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11493		Axis 7: Speed mode	High Pos: Speed Mode
M11494		Axis 7: Speed mode done	High Pos: Reaching target speed/Reaching
M11495		Axis 7: Torque mode in	High Pos: Torque Mode Low Pos: Torque
M11496		Axis 7: Torque mode done	High Pos: Reaching target torque/Reaching
M11497		Axis 7: Forward software	High Pos: State On Low Pos: State Off
M11498		Axis 7: Reverse software	High Pos: State On Low Pos: State Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11499		Axis 7: Starting	High Pos: State On Low Pos: State Off
M11500		Axis 7: Positive limit	High Pos: State On Low Pos: State Off
M11501		Axis 7: Negative	High Pos: State On Low Pos: State Off
M11502		Axis 7: Axis Probe 1 triggered	High Pos: State On Low Pos: State Off
M11503		Axis 7: Axis Probe 2 triggered	High Pos: State On Low Pos: State Off
M11504		Axis 7: Axis synchronizat ion parameter	High Pos: Effective
M11505		Axis 7: Axis tracking error state	High Pos: Triggered
M11506 M11519		Reserved	
M10880	$\begin{aligned} & \text { AX8_SERVO } \\ & \text { _ON } \end{aligned}$	Axis 8: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M10881	$\begin{aligned} & \text { AX8_FAULT_ } \\ & \text { RST } \end{aligned}$	Axis 8: Axis control command: Error reset	Rising: Single axis clear error
M10882	$\begin{aligned} & \text { AX8_DEC_ST } \\ & \text { OP } \end{aligned}$	Axis 8: Axis control command: Deceleration stop	Rising: Single axis deceleration stop

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10883	AX8_EMG_S TOP	Axis 8: Axis control command: Emergency	Rising: Single axis emergency stop
M10884	AX8_SYNC_ ON	Axis 8: Synchronous	High Pos: On Low Pos: Off
M10885	AX8_ORG_SI G	Axis 8: Origin signal	High Pos: On Low Pos: Off
M10886	AX8_POST_S IG	Axis 8: Positive cional	High Pos: On Low Pos: Off
M10887	AX8_NEG_SI G	Axis 8: Negative	High Pos: On Low Pos: Off
M10888	AX8_Z_SIG	Axis 8: Z count signal	High Pos: On Low Pos: Off
M10889	AX8_SYNC_ ON_DIS	Axis 8 Synchronous ON disable	High Pos: On Low Pos: Off
M10890	AX8_SYNC_ OF_DIS	Axis 8: Synchronous OfF disable	High Pos: On Low Pos: Off
M10897		Axis 8: Auxiliary	High Pos: On Low Pos: Off
M10891	Mrobetion ON		

M10898		Axis 8 Axis Probe 1 Function	Rising Triggered		
M10899		Axis 8: Axis Probe 2 Function ON	High Pos: On Low Pos: Off		
M10900		Axis 8: Axis Probe 2 Function	Rising Triggered		
M10901		Axis 8: Axis synchronous parameter immediate effect	High Pos: On Low Pos: Off		
M10902		Axis 8: Axis synchronizat ion parameter valid request	High Pos: On		
Low Pos: Off					
M11521	AX8_OP_RE ADY	IS_ON M10903	Axis 8: Operation Ready		
Synchronize					
d Clutch				\quad	High Pos: On
:---					
Low Pos: Off					
M10904					

M11522	AX8_IN_ERR	Axis 8: Axis error in	High Pos: In Error Low Pos: No Error
M11523	$\begin{aligned} & \text { AX8_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 8: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11524	AX8_IN_CTR L	Axis 8: Control in	High Pos: In Control Low Pos: No Control
M11525	$\begin{aligned} & \text { AX8_IN_HO } \\ & \mathrm{M} \end{aligned}$	Axis 8: Homing in progress	High Pos: Homing Mode Low Pos: Homing
M11526	$\begin{aligned} & \text { AX8_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 8: Homing dono	High Pos: Homing Mode Done
M11527	AX8_IN_POS I	Axis 8: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11528	$\begin{aligned} & \text { AX8_POSI_D } \\ & \mathrm{N} \end{aligned}$	Axis 8: Positioning done	High Pos: Positioning Mode Done
M11529	AX8_IN_JOG	Axis 8: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11530	AX8_JOG_D	Axis 8: JOG	High Pos: JOG Mode
M11531	AX8_IN_SYN C	Axis 8: Synchronous in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch
M11532	$\begin{aligned} & \text { AX8_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 8: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11533		Axis 8: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode
M11534		Axis 8: Speed mode	High Pos: Reaching target sneed/Rearhino
M11535		Axis 8: Torque mode in	High Pos: Torque Mode Low Pos: Torque

M11536		Axis 8: Torque mode done	High Pos: Reaching target torque/Reaching		
M11537		Axis 8: Forward software	High Pos: State On Low Pos: State Off		
M11538		Axis 8: Reverse software	High Pos: State On Low Pos: State Off		
M11539		Axis 8: Starting point limit	High Pos: State On Low Pos: State Off		
M11540		Axis 8: Positive limit switch state	High Pos: State On Low Pos: State Off		
M11541		Axis 8: Negative limit switch	High Pos: State On Low Pos: State Off		
M11542		Axis 8: Axis Probe 1	High Pos: State On Low Pos: State Off		
triggered				\quad	M10920
:---					
Ax9_SERVO					
_ON					

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10921	AX9_FAULT_ RST	Axis 9: Axis control command: Error reset	Rising: Single axis clear error
M10922	AX9_DEC_ST OP	Axis 9: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M10923	$\begin{aligned} & \text { AX9_EMG_S } \\ & \text { TOP } \end{aligned}$	Axis 9: Axis control command: Emergency	Rising: Single axis emergency stop
M10924	$\begin{aligned} & \text { AX9_SYNC_ } \\ & \text { ON } \end{aligned}$	Axis 9: Synchronous	High Pos: On Low Pos: Off
M10925	$\begin{aligned} & \text { AX9_ORG_SI } \\ & \text { G } \end{aligned}$	Axis 9: Origin signal	High Pos: On Low Pos: Off
M10926	$\begin{aligned} & \text { AX9_POST_S } \\ & \text { IG } \end{aligned}$	Axis 9: Positive	High Pos: On Low Pos: Off
M10927	$\begin{aligned} & \text { AX9_NEG_SI } \\ & \text { G } \end{aligned}$	Axis 9: Negative	High Pos: On Low Pos: Off
M10928	AX9_Z_SIG	Axis 9: Z count signal	High Pos: On Low Pos: Off
M10929	$\begin{aligned} & \text { AX9_SYNC_ } \\ & \text { ON_DIS } \end{aligned}$	Axis 9: Synchronous ON disable	High Pos: On Low Pos: Off
M10930	AX9_SYNC_ OFF_DIS	Axis 9: Synchronous OFF disable	High Pos: On Low Pos: Off
M10931		Axis 9: Auxiliary	High Pos: On Low Pos: Off
M10932		Axis 9: Auxiliary	High Pos: On Low Pos: Off
M10933		Axis 9: Auxiliary	High Pos: On Low Pos: Off
M10934		Reserved	
M10935		Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10936		Reserved		
M10937		Axis 9: Axis Probe 1 Function ON		
M10938		High Pos: On Low Pos: Off		
M10939	Axis 9: Axis Probe 1 Function	Rising Triggered		
M10940	Axis 9: Axis Probe 2 Function ON	High Pos: On Low Pos: Off		
M10941	Axis 9: Axis Probe 2 Function	Rising Triggered		
M10959		Axis 9: Axis synchronous parameter immediate effect		High Pos: On
:---				
Low Pos: Off				
M10942				

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11560	AX9_SERVO _IS_ON	Axis 9: Servo On	High Pos: Servo On Low Pos: Servo Off
M11561	$\begin{aligned} & \text { AX9_OP_RE } \\ & \text { ADY } \end{aligned}$	Axis 9: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11562	AX9_IN_ERR	Axis 9: Axis error in	High Pos: In Error Low Pos: No Error
M11563	$\begin{aligned} & \text { AX9_IN_WA } \\ & \text { RN } \end{aligned}$	Axis 9: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11564	$\begin{aligned} & \text { AX9_IN_CTR } \\ & \text { L } \end{aligned}$	Axis 9: Control in	High Pos: In Control Low Pos: No Control
M11565	$\begin{aligned} & \text { AX9_IN_HO } \\ & M \end{aligned}$	Axis 9: Homing in	High Pos: Homing Mode
M11566	$\begin{aligned} & \text { AX9_HOM_ } \\ & \text { DN } \end{aligned}$	Axis 9: Homing	High Pos: Homing Mode Done
M11567	AX9_IN_POS	Axis 9: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning
M11568	$\begin{aligned} & \text { AX9_POSI_D } \\ & \text { N } \end{aligned}$	Axis 9: Positioning done	High Pos: Positioning Mode Done
M11569	AX9_IN_JOG	Axis 9: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode
M11570	AX9_JOG_D	Axis 9: JOG	High Pos: JOG Mode
M11571	$\begin{aligned} & \text { AX9_IN_SYN } \\ & \text { C } \end{aligned}$	Axis 9: Synchronous in progress	High Pos: clutch connecting/disengagi ng Low Pos: Clutch
M11572	AX9_SYNC_ ON	Axis 9: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement
M11573		Axis 9: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode
M11574		Axis 9: Speed mode done	High Pos: Reaching target speed/Reaching

M11575	Axis 9: Torque mode in	High Pos: Torque Mode Low Pos: Torque
M11576	Axis 9: Torque modn dono	High Pos: Reaching target tarown/Roaching
M11577	Axis 9: Forward software	High Pos: State On Low Pos: State Off
M11578	Axis 9: Reverse software	High Pos: State On Low Pos: State Off
M11579	Axis 9: Starting point limit	High Pos: State On Low Pos: State Off
M11580	Axis 9: Positive limit switch state	High Pos: State On Low Pos: State Off
M11581	Axis 8: Negative limit switch	High Pos: State On Low Pos: State Off
M11582	Axis 9: Axis Probe 1 triggered	High Pos: State On Low Pos: State Off
M11583	Axis 9: Axis Probe 2 triggered	High Pos: State On Low Pos: State Off
M11584	Axis 9: Axis synchronizat ion parameter effective	High Pos: Effective
M11585	Axis 9: Axis tracking error state	High Pos: Triggered
M11586 M11599	Reserved	

M10960	AX10_SERVO_ON	Axis 10: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M10961	AX10_FAULT_RST	Axis 10: Axis control command: Error reset	Rising: Single axis clear error
M10962	AX10_DEC_STOP	Axis 10: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M10963	AX10_EMG_STOP	Axis 10: Axis control command: Emergency stop	Rising: Single axis emergency stop
M10964	AX10_SYNC_ON	Axis 10: Synchronous ON	High Pos: On Low Pos: Off
M10965	AX10_ORG_SIG	Axis 10: Origin signal	High Pos: On Low Pos: Off
M10974	AX10966	AX10_POST_SIG	Axis 10: Positive signal
High Pos: On			
Low Pos: Off			

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M10975		Reserved	
M10976		Reserved	
M10977		Axis 10: Axis Probe 1 Function ON	High Pos: On Low Pos: Off
M10978		Axis 10: Axis Probe 1 Function Reset	Rising Triggered
M10979		Axis 10: Axis Probe 2 Function ON	High Pos: On Low Pos: Off
M10980		Axis 10: Axis Probe 2 Function Reset	Rising Triggered
M10981		Axis 10: Axis synchronous	High Pos: On Low Pos: Off
M10982		Axis 10: Axis synchronization parameter valid request in the next	High Pos: On Low Pos: Off
M10983		Axis 10: Axis Synchronized Clutch Edge Trigger Buffer	High Pos: On Low Pos: Off
M11604	AX10_IN_CTRL	Axis 10: Initialization of the cam phase when the axis synchronous clutch is	High Pos: On Low Pos: Off
progress			

$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { M11605 } & \text { AX10_IN_HOM } & \begin{array}{l}\text { Axis 10: Homing in } \\ \text { progress }\end{array} & \begin{array}{l}\text { High Pos: Homing Mode } \\ \text { Low Pos: Homing Mode } \\ \text { Done }\end{array} \\ \hline \text { M11606 } & \text { AX10_HOM_DN } & \begin{array}{l}\text { Axis 10: Homing } \\ \text { done }\end{array} & \begin{array}{l}\text { High Pos: Homing Mode } \\ \text { Done }\end{array} \\ \hline \text { M11607 } & \text { AX10_IN_POSI } & \begin{array}{l}\text { Axis 10: Positioning } \\ \text { in progress }\end{array} & \begin{array}{l}\text { High Pos: Positioning Mode } \\ \text { Low Pos: Positioning Mode } \\ \text { Done }\end{array} \\ \hline \text { M11608 } & \text { AX10_POSI_DN } & \begin{array}{l}\text { Axis 10: Positioning } \\ \text { done }\end{array} & \begin{array}{l}\text { High Pos: Positioning Mode } \\ \text { Done }\end{array} \\ \hline \text { M11609 } & \text { AX10_IN_JOG } & \begin{array}{l}\text { Axis 10: JOG in } \\ \text { progress }\end{array} & \begin{array}{l}\text { High Pos: JOG Mode } \\ \text { Low Pos: JOG Mode Done }\end{array} \\ \hline \text { M11610 } & \text { AX10_JOG_DN } & \text { Axis 10: JOG done } & \text { High Pos: JOG Mode Done } \\ \hline \text { M11611 } & \text { AX10_IN_SYNC } & \begin{array}{l}\text { Axis 10: Synchronous } \\ \text { in progress }\end{array} & \begin{array}{l}\text { High Pos: clutch } \\ \text { connecting/disengaging } \\ \text { Low Pos: Clutch } \\ \text { connection/disengagement } \\ \text { complete }\end{array} \\ \hline \text { M11617 } & & \text { Axis 10: Forward } \\ \text { software limit state }\end{array}\right] \begin{array}{l}\text { High Pos: State On } \\ \text { Low Pos: State Off }\end{array}\right\}$

M11618		Axis 10: Reverse software limit state	High Pos: State On Low Pos: State Off
M11619		Axis 10: Starting point limit switch	High Pos: State On Low Pos: State Off
M11620		Axis 10: Positive limit switch state	High Pos: State On Low Pos: State Off
M11621		Axis 10: Negative limit switch state	High Pos: State On Low Pos: State Off
M11622		Axis 10: Axis Probe 1 triggered state	High Pos: State On Low Pos: State Off
M11623		Axis 10: Axis Probe 2 triggered state	High Pos: State On Low Pos: State Off
M11624		Axis 10: Axis synchronization parameter effective state	High Pos: Effective
M11625		Axis 10: Axis tracking error state	High Pos: Triggered
M11626 M11639		Reserved	
M11000	AX11_SERVO_ON	Axis 11: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M11001	AX11_FAULT_RST	Axis 11: Axis control command: Error reset	Rising: Single axis clear error
M11002	AX11_DEC_STOP	Axis 11: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M11003	AX11_EMG_STOP	Axis 11: Axis control command: Emergency stop	Rising: Single axis emergency stop
M11004	AX11_SYNC_ON	Axis 11: Synchronous ON	High Pos: On Low Pos: Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11005	AX11_ORG_SIG	Axis 11: Origin signal	High Pos: On Low Pos: Off
M11006	AX11_POST_SIG	Axis 11: Positive signal	High Pos: On Low Pos: Off
M11007	AX11_NEG_SIG	Axis 11: Negative signal	High Pos: On Low Pos: Off
M11008	AX11_Z_SIG	Axis 11: Z count signal	High Pos: On Low Pos: Off
M11009	AX11_SYNC_ON_DIS	Axis 11: Synchronous ON disable	High Pos: On Low Pos: Off
M11010	AX11_SYNC_OFF_DIS	Axis 11: Synchronous OFF disable	High Pos: On Low Pos: Off
M11011		Axis 11: Auxiliary clutch ON	High Pos: On Low Pos: Off
M11012		Axis 11: Auxiliary clutch ON disable	High Pos: On Low Pos: Off
M11013		Axis 11: Auxiliary clutch OFF disable	High Pos: On Low Pos: Off
M11014		Reserved	
M11015		Reserved	
M11016 M11039		Reserved	
M11017		Axis 11: Axis Probe 1 Function ON	High Pos: On Low Pos: Off
M11018		Axis 11: Axis Probe 1 Function Reset	Rising Triggered
M11019		Axis 11: Axis Probe 2 Function ON	High Pos: On Low Pos: Off
M11020		Axis 11: Axis Probe 2 Function Reset	Rising Triggered
M11021		Axis 11: Axis synchronous parameter immediate effect request	High Pos: On Low Pos: Off
M11022		Axis 11: Axis synchronization	High Pos: On Low Pos: Off

		parameter valid request in the next cycle	
M11023		Axis 11: Axis Synchronized Clutch Edge Trigger Buffer ON	High Pos: On Low Pos: Off
M11024		Axis 11: Initialization of the cam phase when the axis synchronous clutch is OFF	High Pos: On Low Pos: Off
M11025 M11039		Reserved	
M11640	AX11_SERVO_IS_ON	Axis 11: Servo On	High Pos: Servo On Low Pos: Servo Off
M11641	AX11_OP_READY	Axis 11: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11642	AX11_IN_ERR	Axis 11: Axis error in progress	High Pos: In Error Low Pos: No Error
M11643	AX11_IN_WARN	Axis 11: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11644	AX11_IN_CTRL	Axis 11: Control in progress	High Pos: In Control Low Pos: No Control
M11645	AX11_IN_HOM	Axis 11: Homing in progress	High Pos: Homing Mode Low Pos: Homing Mode Done
M11646	AX11_HOM_DN	Axis 11: Homing done	High Pos: Homing Mode Done
M11647	AX11_IN_POSI	Axis 11: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning Mode Done
M11648	AX11_POSI_DN	Axis 11: Positioning done	High Pos: Positioning Mode Done
M11649	AX11_IN_JOG	Axis 11: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode Done
M11650	AX11_JOG_DN	Axis 11: JOG done	High Pos: JOG Mode Done
M11651	AX11_IN_SYNC	Axis 11: Synchronous in progress	High Pos: clutch connecting/disengaging

			Low Pos: Clutch connection/disengagement complete
M11652	AX11_SYNC_ON	Axis 11: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement completed
M11653		Axis 11: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode Done
M11654		Axis 11: Speed mode done	High Pos: Reaching target speed/Reaching speed upper limit
M11655		Axis 11: Torque mode in progress	High Pos: Torque Mode Low Pos: Torque Mode Done
M11656		Axis 11: Torque mode done	High Pos: Reaching target torque/Reaching torque upper limit
M11657		Axis 11: Forward software limit state	High Pos: State On Low Pos: State Off
M11665		Axis 11: Reverse software limit state	High Pos: State On Low Pos: State Off
M11664		Axis 11: Axis tracking error state	High Pos: Triggered Mois 11: Starting point limit switch state
M11659		High Pos: State On Low Pos: State Off	
Mwitch state			

M11666 M11679		Reserved	
M11040	AX12_SERVO_ON	Axis 12: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M11041	AX12_FAULT_RST	Axis 12: Axis control command: Error reset	Rising: Single axis clear error
M11042	AX12_DEC_STOP	Axis 12: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M11043	AX12_EMG_STOP	Axis 12: Axis control command: Emergency stop	Rising: Single axis emergency stop
M11044	AX12_SYNC_ON	Axis 12: Synchronous ON	High Pos: On Low Pos: Off
M11045	AX12_ORG_SIG	Axis 12: Origin signal	High Pos: On Low Pos: Off
M11046	AX12_POST_SIG	Axis 12: Positive signal	High Pos: On Low Pos: Off
M11047	AX12_NEG_SIG	Axis 12: Negative signal	High Pos: On Low Pos: Off
M11048	AX12_Z_SIG	Axis 12: Z count signal	High Pos: On Low Pos: Off
M11049	AX12_SYNC_ON_DIS	Axis 12: Synchronous ON disable	High Pos: On Low Pos: Off
M11050	AX12_SYNC_OFF_DIS	Axis 12: Synchronous OFF disable	High Pos: On Low Pos: Off
M11051		Axis 12: Auxiliary clutch ON	High Pos: On Low Pos: Off
M11052		Axis 12: Auxiliary clutch ON disable	High Pos: On Low Pos: Off
M11053		Axis 12: Auxiliary clutch OFF disable	High Pos: On Low Pos: Off
M11054		Reserved	
M11055		Reserved	
M11056		Reserved	
M11057		Axis 12: Axis Probe 1 Function ON	High Pos: On Low Pos: Off

M11058		Axis 12: Axis Probe 1 Function Reset	Rising Triggered
M11059		Axis 12: Axis Probe 2 Function ON	High Pos: On Low Pos: Off
M11060		Axis 12: Axis Probe 2 Function Reset	Rising Triggered
M11061		Axis 12: Axis synchronous parameter immediate effect request	High Pos: On Low Pos: Off
M11062		Axis 12: Axis synchronization parameter valid request in the next cycle	High Pos: On Low Pos: Off
M11063		Axis 12: Axis Synchronized Clutch Edge Trigger Buffer ON	High Pos: On Low Pos: Off
M11685	AX12_IN_HOM	Axis 12: Initialization of the cam phase when the axis synchronous clutch is OfF	High Pos: On Low Pos: Off
progress			

			Low Pos: Homing Mode Done				
M11686	AX12_HOM_DN	Axis 12: Homing done	High Pos: Homing Mode Done				
M11687	AX12_IN_POSI	Axis 12: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning Mode Done				
M11688	AX12_POSI_DN	Axis 12: Positioning done	High Pos: Positioning Mode Done				
M11689	AX12_IN_JOG	Axis 12: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode Done				
M11690	AX12_JOG_DN	Axis 12: JOG done	High Pos: JOG Mode Done				
M11691	AX12_IN_SYNC	Axis 12: Synchronous in progress	High Pos: clutch connecting/disengaging Low Pos: Clutch connection/disengagement complete				
M11692	AX12_SYNC_ON	on	Axis 12: Synchronous on				
High Pos: Clutch connection							
complete							
Low Pos: Clutch							
disengagement completed				$	$	M1699	
:---	:---						

M11700		Axis 12: Positive limit switch state	High Pos: State On Low Pos: State Off
M11701		Axis 12: Negative limit switch state	High Pos: State On Low Pos: State Off
M11702		Axis 12: Axis Probe 1 triggered state	High Pos: State On Low Pos: State Off
M11703		Axis 12: Axis Probe 2 triggered state	High Pos: State On Low Pos: State Off
M11704		Axis 12: Axis synchronization parameter effective state	High Pos: Effective
M11705		Axis 12: Axis tracking error state	High Pos: Triggered
M11706 M11719		Reserved	
M11080	AX13_SERVO_ON	Axis 13: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M11081	AX13_FAULT_RST	Axis 13: Axis control command: Error reset	Rising: Single axis clear error
M11082	AX13_DEC_STOP	Axis 13: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M11083	AX13_EMG_STOP	Axis 13: Axis control command: Emergency stop	Rising: Single axis emergency stop
M11084	AX13_SYNC_ON	Axis 13: Synchronous ON	High Pos: On Low Pos: Off
M11085	AX13_ORG_SIG	Axis 13: Origin signal	High Pos: On Low Pos: Off
M11086	AX13_POST_SIG	Axis 13: Positive signal	High Pos: On Low Pos: Off
M11087	AX13_NEG_SIG	Axis 13: Negative signal	High Pos: On Low Pos: Off
M11088	AX13_Z_SIG	Axis 13: Z count signal	High Pos: On Low Pos: Off
M11089	AX13_SYNC_ON_DIS	Axis 13: Synchronous ON disable	High Pos: On Low Pos: Off

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11090	AX13_SYNC_OFF_DIS	Axis 13: Synchronous OFF disable	High Pos: On Low Pos: Off		
M11091		Axis 13: Auxiliary clutch ON	High Pos: On Low Pos: Off		
M11092		Axis 13: Auxiliary lutch ON disable	High Pos: On Low Pos: Off		
M11093		Axis 13: Auxiliary clutch OFF disable	High Pos: On Low Pos: Off		
M11094		Reserved			
M11095		Reserved			
M11096		Reserved Function ON	Axis Probe 1 Function Reset		
M11097		High Pos: On Low Pos: Off			
M11098		Function ON			Rising Triggered
:---					
M11099					

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11119			
M11720	AX13_SERVO_IS_ON	Axis 13: Servo On	High Pos: Servo On Low Pos: Servo Off
M11721	AX13_OP_READY	Axis 13: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11722	AX13_IN_ERR	Axis 13: Axis error in progress	High Pos: In Error Low Pos: No Error
M11723	AX13_IN_WARN	Axis 13: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11724	AX13_IN_CTRL	Axis 13: Control in progress	High Pos: In Control Low Pos: No Control
M11725	AX13_IN_HOM	Axis 13: Homing in progress	High Pos: Homing Mode Low Pos: Homing Mode Done
M11726	AX13_HOM_DN	Axis 13: Homing done	High Pos: Homing Mode Done
M11727	AX13_IN_POSI	Axis 13: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning Mode Done
M11728	AX13_POSI_DN	Axis 13: Positioning done	High Pos: Positioning Mode Done
M11729	AX13_IN_JOG	Axis 13: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode Done
M11730	AX13_JOG_DN	Axis 13: JOG done	High Pos: JOG Mode Done
M11734	Ax11732	AX13_SYNC_ON	Axis 13: Synchronous in progress
High Pos: clutch connecting/disengaging Low Pos: Clutch connection/disengagement complete			
M11731	AX13_IN_SYNC	Axis 13: Synchronous on done	High Pos: Clutch connection complete Low Pos: Clutch disengagement completed
M11733	Axis 13: Speed mode	High Pos: Speed Mode Low Pos: Speed Mode Done	
in progress			

M11735		Axis 13: Torque mode in progress	High Pos: Torque Mode Low Pos: Torque Mode Done
M11736		Axis 13: Torque mode done	High Pos: Reaching target torque/Reaching torque upper limit
M11737		Axis 13: Forward software limit state	High Pos: State On Low Pos: State Off
M11738		Axis 13: Reverse software limit state	High Pos: State On Low Pos: State Off
M11739		Axis 13: Starting point limit switch state	High Pos: State On Low Pos: State Off
M11740		Axis 13: Positive limit switch state	High Pos: State On Low Pos: State Off
M11741		Axis 13: Negative limit switch state	High Pos: State On Low Pos: State Off
M11742		Axis 13: Axis Probe 1 triggered state	High Pos: State On Low Pos: State Off
M11743		Axis 13: Axis Probe 2 triggered state	High Pos: State On Low Pos: State Off
M11744		Axis 13: Axis synchronization parameter effective state	High Pos: Effective
M11745		Axis 13: Axis tracking error state	High Pos: Triggered
M11746 M11759		Reserved	
M11120	AX14_SERVO_ON	Axis 14: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M11121	AX14_FAULT_RST	Axis 14: Axis control command: Error reset	Rising: Single axis clear error
M11122	AX14_DEC_STOP	Axis 14: Axis control command: Deceleration stop	Rising: Single axis deceleration stop

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11123	AX14_EMG_STOP	Axis 14: Axis control command: Emergency stop	Rising: Single axis emergency stop
M11124	AX14_SYNC_ON	Axis 14: Synchronous ON	High Pos: On Low Pos: Off
M11125	AX14_ORG_SIG	Axis 14: Origin signal	High Pos: On Low Pos: Off
M11126	AX14_POST_SIG	Axis 14: Positive signal	High Pos: On Low Pos: Off
M11127	AX14_NEG_SIG	Axis 14: Negative signal	High Pos: On Low Pos: Off
M11128	AX14_Z_SIG	Axis 14: Z count signal	High Pos: On Low Pos: Off
M11129	AX14_SYNC_ON_DIS	Axis 14: Synchronous ON disable	High Pos: On Low Pos: Off
M11130	AX14_SYNC_OFF_DIS	Axis 14: Synchronous OFF disable	High Pos: On Low Pos: Off
M11131		Axis 14: Auxiliary clutch ON	High Pos: On Low Pos: Off
M11132		Axis 14: Auxiliary clutch ON disable	High Pos: On Low Pos: Off
M11133		Axis 14: Auxiliary clutch OFF disable	High Pos: On Low Pos: Off
M11134		Reserved	
M11135		Reserved	
M11136		Reserved	
M11137		Axis 14: Axis Probe 1 Function ON	High Pos: On Low Pos: Off
M11138		Axis 14: Axis Probe 1 Function Reset	Rising Triggered
M11139		Axis 14: Axis Probe 2 Function ON	High Pos: On Low Pos: Off
M11140		Axis 14: Axis Probe 2 Function Reset	Rising Triggered
M11141		Axis 14: Axis synchronous parameter immediate effect request	High Pos: On Low Pos: Off

M11142		Axis 14: Axis synchronization parameter valid request in the next cycle	High Pos: On Low Pos: Off
M11143		Axis 14: Axis Synchronized Clutch Edge Trigger Buffer ON	High Pos: On Low Pos: Off
M11144		Axis 14: Initialization of the cam phase when the axis synchronous clutch is OFF	High Pos: On Low Pos: Off
M11145 \sim		Reserved	

M11771	AX14_IN_SYNC	Axis 14: Synchronous in progress	High Pos: clutch connecting/disengaging Low Pos: Clutch connection/disengagement complete
M11772	AX14_SYNC_ON	Axis 14: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement completed
M11773		Axis 14: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode Done
M11774		Axis 14: Speed mode done	High Pos: Reaching target speed/Reaching speed upper limit
M11775		Axis 14: Torque mode in progress	High Pos: Torque Mode Low Pos: Torque Mode Done
M11776		Axis 14: Torque mode done	High Pos: Reaching target torque/Reaching torque upper limit
M11777		Axis 14: Forward software limit state	High Pos: State On Low Pos: State Off
M11778		Axis 14: Reverse software limit state	High Pos: State On Low Pos: State Off
M11779		Axis 14: Starting point limit switch state	High Pos: State On Low Pos: State Off
M11780		Axis 14: Positive limit switch state	High Pos: State On Low Pos: State Off
M11781		Axis 14: Negative limit switch state	High Pos: State On Low Pos: State Off
M11782		Axis 14: Axis Probe 1 triggered state	High Pos: State On Low Pos: State Off
M11783		Axis 14: Axis Probe 2 triggered state	High Pos: State On Low Pos: State Off
M11784		Axis 14: Axis synchronization parameter effective state	High Pos: Effective

M11785		Axis 14: Axis tracking error state	High Pos: Triggered
M11786 M11799		Reserved	
M11160	AX15_SERVO_ON	Axis 15: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
M11161	AX15_FAULT_RST	Axis 15: Axis control command: Error reset	Rising: Single axis clear error
M11162	AX15_DEC_STOP	Axis 15: Axis control command: Deceleration stop	Rising: Single axis deceleration stop
M11163	AX15_EMG_STOP	Axis 15: Axis control command: Emergency stop	Rising: Single axis emergency stop
M11164	AX15_SYNC_ON	Axis 15: Synchronous ON	High Pos: On Low Pos: Off
M11165	AX15_ORG_SIG	Axis 15: Origin signal	High Pos: On Low Pos: Off
M11166	AX15_POST_SIG	Axis 15: Positive signal	High Pos: On Low Pos: Off
M11167	AX15_NEG_SIG	Axis 15: Negative signal	High Pos: On Low Pos: Off
M11168	AX15_Z_SIG	Axis 15: Z count signal	High Pos: On Low Pos: Off
M11169	AX15_SYNC_ON_DIS	Axis 15: Synchronous ON disable	High Pos: On Low Pos: Off
M11170	AX15_SYNC_OFF_DIS	Axis 15: Synchronous OFF disable	High Pos: On Low Pos: Off
M11171		Axis 15: Auxiliary clutch ON	High Pos: On Low Pos: Off
M11172		Axis 15: Auxiliary clutch ON disable	High Pos: On Low Pos: Off
M11173		Axis 15: Auxiliary clutch OFF disable	High Pos: On Low Pos: Off
M11174		Reserved	
M11175		Reserved	
M11176		Reserved	

M11177		Axis 15: Axis Probe 1 Function ON	High Pos: On Low Pos: Off
M11178		Axis 15: Axis Probe 1 Function Reset	Rising Triggered
M11179		Axis 15: Axis Probe 2 Function ON	High Pos: On Low Pos: Off
M11180		Axis 15: Axis Probe 2 Function Reset	Rising Triggered
M11181		Axis 15: Axis synchronous parameter immediate effect request	High Pos: On Low Pos: Off
M11182		Axis 15: Axis synchronization parameter valid request in the next cycle	High Pos: On Low Pos: Off
M11183		Axis 15: Axis Synchronized Clutch Edge Trigger Buffer ON	High Pos: On Low Pos: Off
M11184		Axis 15: Initialization of the cam phase when the axis synchronous clutch is OFF	High Pos: On Low Pos: Off
M11185 M11199		Reserved	
M11800	AX15_SERVO_IS_ON	Axis 15: Servo On	High Pos: Servo On Low Pos: Servo Off
M11801	AX15_OP_READY	Axis 15: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11802	AX15_IN_ERR	Axis 15: Axis error in progress	High Pos: In Error Low Pos: No Error
M11803	AX15_IN_WARN	Axis 15: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11804	AX15_IN_CTRL	Axis 15: Control in progress	High Pos: In Control Low Pos: No Control

M11805	AX15_IN_HOM	Axis 15: Homing in progress	High Pos: Homing Mode Low Pos: Homing Mode Done
M11806	AX15_HOM_DN	Axis 15: Homing done	High Pos: Homing Mode Done
M11807	AX15_IN_POSI	Axis 15: Positioning in progress	High Pos: Positioning Mode Low Pos: Positioning Mode Done
M11808	AX15_POSI_DN	Axis 15: Positioning done	High Pos: Positioning Mode Done
M11809	AX15_IN_JOG	Axis 15: JOG in progress	High Pos: JOG Mode Low Pos: JOG Mode Done
M11810	AX15_JOG_DN	Axis 15: JOG done	High Pos: JOG Mode Done
M11811	AX15_IN_SYNC	Axis 15: Synchronous in progress	High Pos: clutch connecting/disengaging Low Pos: Clutch connection/disengagement complete
M11812	AX15_SYNC_ON	Axis 15: Synchronous on	High Pos: Clutch connection complete Low Pos: Clutch disengagement completed
M11813		Axis 15: Speed mode in progress	High Pos: Speed Mode Low Pos: Speed Mode Done
M11814		Axis 15: Speed mode done	High Pos: Reaching target speed/Reaching speed upper limit
M11815		Axis 15: Torque mode in progress	High Pos: Torque Mode Low Pos: Torque Mode Done
M11816		Axis 15: Torque mode done	High Pos: Reaching target torque/Reaching torque upper limit
M11817		Axis 15: Forward software limit state	High Pos: State On Low Pos: State Off
M11818		Axis 15: Reverse software limit state	High Pos: State On Low Pos: State Off

M11819		Axis 15: Starting point limit switch state	High Pos: State On Low Pos: State Off
M11820		Axis 15: Positive limit switch state	High Pos: State On Low Pos: State Off
M11821		Axis 15: Negative limit switch state	High Pos: State On Low Pos: State Off
M11822		Axis 15: Axis Probe 1 triggered state	High Pos: State On Low Pos: State Off
M11823		Axis 15: Axis Probe 2 triggered state	High Pos: State On Low Pos: State Off
M11824		Axis 15: Axis synchronization parameter effective state	High Pos: Effective
M11825		Axis 15: Axis tracking error state	High Pos: Triggered
M11826		Reserved \sim	
M11839		AX16_NEG_SIG	Axis 16: Negative signal
M11200	AX16_SERVO_ON	Axis 16: Axis control command: Servo ON	Rising: Single axis Servo On Falling: Single axis Servo Off
Low Pos: Off			

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11208	AX16_Z_SIG	Axis 16: Z count signal	High Pos: On Low Pos: Off
M11209	AX16_SYNC_ON_DIS	Axis 16: Synchronous ON disable	High Pos: On Low Pos: Off
M11210	AX16_SYNC_OFF_DIS	Axis 16: Synchronous OfF disable	High Pos: On Low Pos: Off
M11211		Axis 16: Auxiliary clutch ON	High Pos: On Low Pos: Off
M11212		Axis 16: Auxiliary clutch ON disable	High Pos: On Low Pos: Off
M11213		Axis 16: Auxiliary clutch OFF disable	High Pos: On Low Pos: Off
M11214		Reserved	Reserved

		synchronous clutch is OFF	
M11225 M11239		Reserved	
M11840	AX16_SERVO_IS_ON	Axis 16: Servo On	High Pos: Servo On Low Pos: Servo Off
M11841	AX16_OP_READY	Axis 16: Operation Ready	High Pos: Ready Low Pos: Not Ready
M11842	AX16_IN_ERR	Axis 16: Axis error in progress	High Pos: In Error Low Pos: No Error
M11843	AX16_IN_WARN	Axis 16: Axis warning in progress	High Pos: In Warning Low Pos: No Warning
M11844	AX16_IN_CTRL	Axis 16: Control in progress	High Pos: In Control Low Pos: No Control
M11845	AX16_IN_HOM	Axis 16: Homing in progress	High Pos: Homing Mode Low Pos: Homing Mode Done
M11846	AX16_HOM_DN	Axis 16: Homing done	High Pos: Homing Mode Done
M11853	M11847	AX16_IN_POSI	Axis 16: Positioning in progress
High Pos: Positioning Mode Low Pos: Positioning Mode			
Mone			

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

M11854	Axis 16: Speed mode done	High Pos: Reaching target speed/Reaching speed upper limit
M11855	Axis 16: Torque mode in progress	High Pos: Torque Mode Low Pos: Torque Mode Done
M11856	Axis 16: Torque mode done	High Pos: Reaching target torque/Reaching torque upper limit
M11857	Axis 16: Forward software limit state	High Pos: State On Low Pos: State Off
M11858	Axis 16: Reverse software limit state	High Pos: State On Low Pos: State Off
M11859	Axis 16: Starting point limit switch state	High Pos: State On Low Pos: State Off
M11860	Axis 16: Positive limit switch state	High Pos: State On Low Pos: State Off
M11861	Axis 16: Negative limit switch state	High Pos: State On Low Pos: State Off
M11862	Axis 16: Axis Probe 1 triggered state	High Pos: State On Low Pos: State Off
M11863	Axis 16: Axis Probe 2 triggered state	High Pos: State On Low Pos: State Off
M11864	Axis 16: Axis synchronization parameter effective state	High Pos: Effective
M11865	Axis 16: Axis tracking error state	High Pos: Triggered
M11866 M12000	Reserved	

$\left.\begin{array}{|l|l|l|l|}\hline \text { M12001 } & \text { BLOCK_ACT_DN_1 } & \text { Motion Block 1 Done } & \\ \sim & \sim & \sim\end{array}\right)$

Motion special relay list
※All special relays do not provide TU and TD differential contact commands (TU, TD), If it is necessary to perform differential action on the special relay, it can be replaced by an indirect method. (Refer to the picture below)

special relays use TD/TD by an indirect method

[^1]2-6 Motion Special Register Details

Register	System Tag Symbol	Function	Description
R36880		Motion controller state	The values of R36880 and R36881 are in order: 1, 0: EtherCAT offline; 2. 0: EtherCAT slave is offline; 3,0 : The number
R36881		Motion controller error code	is wrong; 4. 64: Motion operation timeout; 4. 10081: EtherCAT delay; 4. 1001: PLC emergency stop; 4. Other values: Record the value of R36881 and report it to the
R36882	UNIT_PROGRAM_STATE	Unit Program State	0 : Ready to complete 4: Standby 6: In progress 9: Abort
F36883	UNIT_ERR_CODE	Unit Error Code	The value is the latest error code among the motion flow status (R36924-36933)
R36884	CURRENT_STEP_1	Current Step 1	
R36885	CURRENT_STEP_2	Current Step 2	
R36886	CURRENT_STEP_3	Current Step 3	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R36887	CURRENT_STEP_4	Current Step 4	
R36888	CURRENT_STEP_5	Current Step 5	
R36889	CURRENT_STEP_6	Current Step 6	
R36890	CURRENT_STEP_7	Current Step 7	
R36891	CURRENT_STEP_8	Current Step 8	
R36892	CURRENT_STEP_9	Current Step 9	
R36893	CURRENT_STEP_10	Current Step 10	
R36894	CURRENT_STEP_11	Current Step 11	
R36895	CURRENT_STEP_12	Current Step 12	
R36896	CURRENT_STEP_13	Current Step 13	
R36897	CURRENT_STEP_14	Current Step 14	
R36898	CURRENT_STEP_15	Current Step 15	
R36899	CURRENT_STEP_16	Current Step 16	
R36900	CURRENT_STEP_17	Current Step 17	
R36901	CURRENT_STEP_18	Current Step 18	
R36902	CURRENT_STEP_19	Current Step 19	
R36903	CURRENT_STEP_20	Current Step 20	
FR36904	CURRENT_BLOCK_STATE_1	Current Block State 1	0: Idle branch 1: In flow block control 2: Flow block completed
R36905	CURRENT_BLOCK_STATE_2	Current Block State 2	0: Idle branch 1: In flow block control 2: Flow block completed
-R36906	CURRENT_BLOCK_STATE_3	Current Block State 3	0: Idle branch 1: In flow block control 2: Flow block completed

-R36907	CURRENT_BLOCK_STATE_4	Current Block State 4	0: Idle branch 1: In flow block control 2: Flow block completed
-R36908	CURRENT_BLOCK_STATE_5	Current Block State 5	0: Idle branch 1: In flow block control 2: Flow block completed
-R36909	CURRENT_BLOCK_STATE_6	Current Block State 6	0: Idle branch 1: In flow block control 2: Flow block completed
-R36910	CURRENT_BLOCK_STATE_7	Current Block State 7	0: Idle branch 1: In flow block control 2: Flow block completed
-R36911	CURRENT_BLOCK_STATE_8	Current Block State 8	0 : Idle branch 1: In flow block control 2: Flow block completed
-R36912	CURRENT_BLOCK_STATE_9	Current Block State 9	0: Idle branch 1: In flow block control 2: Flow block completed
-R36913	CURRENT_BLOCK_STATE_10	Current Block State 10	0: Idle branch 1: In flow block control 2: Flow block completed
-R36914	CURRENT_BLOCK_STATE_11	Current Block State 11	0: Idle branch 1: In flow block control 2: Flow block completed

FR36915	CURRENT_BLOCK_STATE_12	Current Block State 12	0: Idle branch 1: In flow block control 2: Flow block completed
FR36916	CURRENT_BLOCK_STATE_13	Current Block State 13	0: Idle branch 1: In flow block control 2: Flow block completed
FR36917	CURRENT_BLOCK_STATE_14	Current Block State 14	0: Idle branch 1: In flow block control 2: Flow block completed
FR36918	CURRENT_BLOCK_STATE_15	Current Block State 15	0: Idle branch 1: In flow block control 2: Flow block completed
F 76919	CURRENT_BLOCK_STATE_16	Current Block State 16	0: Idle branch 1: In flow block control 2: Flow block completed
FR36920	CURRENT_BLOCK_STATE_17	Current Block State 17	0: Idle branch 1: In flow block control 2: Flow block completed
FR36921	CURRENT_BLOCK_STATE_18	Current Block State 18	0: Idle branch 1: In flow block control 2: Flow block completed
F 76922	CURRENT_BLOCK_STATE_19	Current Block State 19	0: Idle branch 1: In flow block control 2: Flow block completed

F36923	CURRENT_BLOCK_STATE_20	Current Block State 20	0: Idle branch 1: In flow block control 2: Flow block completed
FR36924	FLOW_STATE_ID_1	Flow State ID 1	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
FR36925	FLOW_STATE_ID_2	Flow State ID 2	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
-R36926	FLOW_STATE_ID_3	Flow State ID 3	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow

「R36927	FLOW_STATE_ID_4	Flow State ID 4	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
-R36928	FLOW_STATE_ID_5	Flow State ID 5	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
-R36929	FLOW_STATE_ID_6	Flow State ID 6	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
FR36930	FLOW_STATE_ID_7	Flow State ID 7	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control

			9: An error occurred in the motion flow
F 76931	FLOW_STATE_ID_8	Flow State ID 8	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
F36932	FLOW_STATE_ID_9	Flow State ID 9	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
R36933	FLOW_STATE_ID_10	Flow State ID 10	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
R36934	FLOW_STATE_ID_11	Flow State ID 11	0 : Motion is not activated 4: Motion starts, EtherCAT

			connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
R36935	FLOW_STATE_ID_12	Flow State ID 12	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
R36936	FLOW_STATE_ID_13	Flow State ID 13	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
R 76937	FLOW_STATE_ID_14	Flow State ID 14	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow

FR36938	FLOW_STATE_ID_15	Flow State ID 15	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
-R36939	FLOW_STATE_ID_16	Flow State ID 16	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
-R36940	FLOW_STATE_ID_17	Flow State ID 17	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
FR36941	FLOW_STATE_ID_18	Flow State ID 18	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

			9: An error occurred in the motion flow
F36942	FLOW_STATE_ID_19	Flow State ID 19	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
R36943	FLOW_STATE_ID_20	Flow State ID 20	0 : Motion is not activated 4: Motion starts, EtherCAT connection is in progress 6: Motion flow control 9: An error occurred in the motion flow
$\begin{aligned} & \text { R36944~ } \\ & \text { R36963 } \end{aligned}$		Reserved	
R36964	ENCODER_VALUE_1	Encoder 1 (Low word)	
R36965		Encoder 1 (High word)	
R36966	ENCODER_VALUE_2	Encoder 2 (Low word)	
R36967		Encoder 2 (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR36968	ENCODER_VALUE_3	Encoder 3 (Low word)	
FR36969		Encoder 3 (High word)	
VR36970	ENCODER_VALUE_4	Encoder 4 (Low word)	
VR36971		Encoder 4 (High word)	
FR36972		Gray code encoder value (Low word)	
VR36973		Gray code encoder value (High word)	
FR36974		Gray code encoder turns (Low word)	
VR36975		Gray code encoder turns (High word)	
$\begin{aligned} & \text { R36976 } \\ & \sim \\ & \text { R36979 } \end{aligned}$		Reserved	
/R36980		Axis 1: Axis properties	
$\begin{aligned} & \text { R36981 } \\ & \sim \\ & \text { R36983 } \end{aligned}$		Reserved	
FR36984	AX1_CTRL_MODE	Axis 1: Current Control Mode	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

$\begin{aligned} & \text { R36985 } \\ & \sim \\ & \text { R37003 } \end{aligned}$		Reserved	
FR37004	AX1_ERR_INFO_1	Axis 1: Error Detail Information 1	
T37005	AX1_ERR_INFO_2	Axis 1: Error Detail Information 2	
FR37006	AX1_WARN_INFO_1	Axis 1: Warning Detail Information 1	
-R37007	AX1_WARN_INFO_2	Axis 1: Warning Detail Information 2	
$\begin{aligned} & \text { R37008 } \\ & \sim \\ & \text { R37011 } \end{aligned}$		Reserved	
-R37012	AX1_AX_CTRL	Axis 1: Axis Control	
-R37013	AX1_WARN_CODE	Axis 1: Axis Warning Code	
-R37014		Axis 1: Command Coordinate (Low word)	
-R37015		Axis 1: Command Coordinate (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37016	AX1_CMD_SPD	Axis 1: Command Speed (Low word)	
-R37017		Axis 1: Command Speed (High word)	
FR37018	AX1_CMD_POSI	Axis 1: Command Position (Low word)	
FR37019		Axis 1: Command Position (High word)	
-R37020	AX1_POSI_CUR_PT_NUM	Axis 1: Positioning Current Point No.	
FR37021	AX1_CUR_COORD	Axis 1: Current Coordinate (Low word)	
FR37022		Axis 1: Current Coordinate (High word)	
F 37023	AX1_SPD	Axis 1: Feedback Speed Monitor (Low word)	
FR37024		Axis 1: Feedback Speed Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37025	AX1_POSI_DEV	Axis 1: Position Deviation Monitor (Low word)	
R37026		Axis 1: Position Deviation Monitor (High word)	
FR37027	AX1_DRIVE_DI	Axis 1: Digital Input from Driver (Low word)	
R37028		Axis 1: Digital Input from Driver (High word)	
R37029		Axis 1: Current Flow ID	
R37030	AX1_CNTA_OUT	Axis 1: Contact Output (Low word)	
R37031		Axis 1: Contact Output (High word)	
R37032	AX1_CUR_TORQ	Axis 1: Current Torque	
R37033	AX1_ECAM_IN_PHASE	Axis 1: E-Cam Input Phase (Low word)	
R37034		Axis 1: E-Cam Input Phase (High word)	
F 77035	AX1_ORG_POSI	Axis 1: Origin Position (Low word)	
F 77036		Axis 1: Origin Position (High word)	

R37037		Axis 1: Axis Status Word	Bit0:M11240 Bit12:M11252 After Bit13 Reserved
R37038			
F37039			
-R37040		Axis 1: Main Clutch Output Phase (Low word)	
F 737041		Axis 1: Main Clutch Output Phase (High word)	
FR37042		Axis 1: Probe 1 Coordinate (Low Word)	
FR37043		Axis 1: Probe 1 Coordinate (High Word)	
R37044		Axis 1: Probe 2 Coordinate (Low Word)	
-R37045		Axis 1: Probe 2 Coordinate (High Word)	
$\boldsymbol{\sim}$ R37046 ~R37129 Reserved			
-R37130		Axis 2: Axis properties	
R37131R37133			
R37134	AX2_CTRL_MODE	Axis 2: Current Control Mode	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R37135 \sim		Reserved	
R37153			
R37154	AX2_ERR_INFO_1	Axis 2: Error Detail Information 1	
R37155	AX2_ERR_INFO_2	Axis 2: Error Detail Information 2	
R37156	AX2_WARN_INFO_1	Axis 2: Warning Detail Information 1	
R37158	AX2_WARN_INFO_2	Axis 2: Warning Detail Information 2	
R37161	AX37	Reserved	
R37170	AX2_AX_CTRL	R37162	AX2_WARN_CODE

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R37171	AX2_CUR_COORD	Axis 2: Current Coordinate (Low word)	
FR37172		Axis 2: Current Coordinate (High word)	
-R37173	AX2_SPD	Axis 2: Feedback Speed Monitor (Low word)	
-R37174		Axis 2: Feedback Speed Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R37175	AX2_POSI_DEV	Axis 2: Position Deviation Monitor (Low word)	
R37176		Axis 2: Position Deviation Monitor (High word)	
FR37177	AX2_DRIVE_DI	Axis 2: Digital Input from Driver (Low word)	
FR37178		Axis 2: Digital Input from Driver (High word)	
-R37179		Axis 2: Current Flow ID	
FR37180	AX2_CNTA_OUT	Axis 2: Contact Output (Low word)	
「R37181		Axis 2: Contact Output (High word)	
FR37182	AX2_CUR_TORQ	Axis 2: Current Torque	
R37183	AX2_ECAM_IN_PHASE	Axis 2: E-Cam Input Phase (Low word)	
F37184		Axis 2: E-Cam Input Phase (High word)	
FR37185	AX2_ORG_POSI	Axis 2: Origin Position (Low word)	
FR37186		Axis 2: Origin Position (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R37280		Axis 3: Axis properties	
R37281 R37283		Reserved	
R37284	AX3_CTRL_MODE	Axis 3: Current Control Mode	
$\begin{aligned} & \boldsymbol{\nabla} \text { R37285 } \\ & \sim \\ & \boldsymbol{\sim} 37303 \end{aligned}$		Reserved	
R37304	AX3_ERR_INFO_1	Axis 3: Error Detail Information 1	
R37305	AX3_ERR_INFO_2	Axis 3: Error Detail Information 2	
F37306	AX3_WARN_INFO_1	Axis 3: Warning Detail Information 1	
-R37307	AX3_WARN_INFO_2	Axis 3: Warning Detail Information 2	
$\begin{array}{\|l\|} \hline \boldsymbol{V} 37308 \\ \sim \\ \boldsymbol{\sim} 37311 \end{array}$		Reserved	
R37312	AX3_AX_CTRL	Axis 3: Axis Control	
R37313	AX3_WARN_CODE	Axis 3: Axis Warning Code	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37314	AX3_CMD_COORD	Axis 3: Command Coordinate (Low word)	
FR37315		Axis 3: Command Coordinate (High word)	
FR37316	AX3_CMD_SPD	Axis 3: Command Speed (Low word)	
-R37317		Axis 3: Command Speed (High word)	
FR37318	AX3_CMD_POSI	Axis 3: Command Position (Low word)	
-R37319		Axis 3: Command Position (High word)	
-R37320	$\begin{aligned} & \text { AX3_POSI_CUR_PT_NU } \\ & \mathrm{M} \end{aligned}$	Axis 3: Positioning Current Point No.	
-R37321	AX3_CUR_COORD	Axis 3: Current Coordinate (Low word)	
-R37322		Axis 3: Current Coordinate (High word)	
-R37323	AX3_SPD	Axis 3: Feedback Speed Monitor (Low word)	
FR37324		Axis 3: Feedback Speed Monitor (High word)	
FR37325	AX3_POSI_DEV	Axis 3: Position Deviation Monitor (Low word)	
FR37326		Axis 3: Position Deviation Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R37327	AX3_DRIVE_DI	Axis 3: Digital Input from Driver (Low word)	
-R37328		Axis 3: Digital Input from Driver (High word)	
-R37329		Axis 3: Current Flow ID	
-R37330	AX3_CNTA_OUT	Axis 3: Contact Output (Low word)	
-R37331		Axis 3: Contact Output (High word)	
R37332	AX3_CUR_TORQ	Axis 3: Current Torque	
-R37333	AX3_ECAM_IN_PHASE	Axis 3: E-Cam Input Phase (Low word)	
-R37334		Axis 3: E-Cam Input Phase (High word)	
-R37335	AX3_ORG_POSI	Axis 3: Origin Position (Low word)	
-R37336		Axis 3: Origin Position (High word)	
-R37337			
-R37338		Axis 3: Axis Status Word	Bit12:M11332 After Bit13
-R37339			

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

VR37340	Axis 3: Main Clutch Output Phase (Low word)	
VR37341	Axis 3: Main Clutch Output Phase (High word)	
FR37342	Axis 3: Probe 1 Coordinate (Low Word)	
VR37343	Axis 3: Probe 1 Coordinate (High Word)	
VR37344	Axis 3: Probe 2 Coordinate (Low Word)	
FR37345	Axis 3: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R37346 } \\ & \sim \\ & \text { R37429 } \end{aligned}$	Reserved	
R37430	Axis 4: Axis properties	
$\begin{aligned} & \text { R37431 } \\ & \sim \\ & \text { R37433 } \end{aligned}$	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37434	AX4_CTRL_MODE	Axis 4: Current Control Mode	
$\boldsymbol{\sigma}$ R37435 \sim Reserved $\boldsymbol{\sim}$ R37453			
F37454	AX4_ERR_INFO_1	Axis 4: Error Detail Information 1	
-R37455	AX4_ERR_INFO_2	Axis 4: Error Detail Information 2	
-R37456	AX4_WARN_INFO_1	Axis 4: Warning Detail Information 1	
-R37457	AX4_WARN_INFO_2	Axis 4: Warning Detail Information 2	
R37458 \sim Reserved R37461			
R37462	AX4_AX_CTRL	Axis 4: Axis Control	
R37463	AX4_WARN_CODE	Axis 4: Axis Warning Code	
F 737464	AX4_CMD_COORD	Axis 4: Command Coordinate (Low word)	
FR37465		Axis 4: Command Coordinate (High word)	
F 737466	AX4_CMD_SPD	Axis 4: Command Speed (Low word)	
-R37467		Axis 4: Command Speed (High word)	
F37468	AX4_CMD_POSI	Axis 4: Command Position (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R37469		Axis 4: Command Position (High word)	
-R37470	AX4_POSI_CUR_PT_NUM	Axis 4: Positioning Current Point No.	
FR37471	AX4_CUR_COORD	Axis 4: Current Coordinate (Low word)	
「R37472		Axis 4: Current Coordinate (High word)	
FR37473	AX4_SPD	Axis 4: Feedback Speed Monitor (Low word)	
FR37474		Axis 4: Feedback Speed Monitor (High word)	
FR37475	AX4_POSI_DEV	Axis 4: Position Deviation Monitor (Low word)	
FR37476		Axis 4: Position Deviation Monitor (High word)	
-R37477	AX4_DRIVE_DI	Axis 4: Digital Input from Driver (Low word)	
FR37478		Axis 4: Digital Input from Driver (High word)	
-R37479		Axis 4: Current Flow ID	
FR37480	AX4_CNTA_OUT	Axis 4: Contact Output (Low word)	
FR37481		Axis 4: Contact Output (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37494		Axis 4: Probe 2 Coordinate (Low Word)	
-R37495		Axis 4: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \boldsymbol{\nabla} 37496 \\ & \sim \\ & \sim \\ & \sim \end{aligned}$		Reserved	
R37580		Axis 5: Axis properties	
$\begin{aligned} & \text { R37581 } \\ & \sim \\ & \text { R37583 } \end{aligned}$		Reserved	
FR37584	AX5_CTRL_MODE	Axis 5: Current Control Mode	
$\begin{aligned} & \text { FR37585 } \\ & \sim \\ & \sim \\ & \sim \end{aligned}$		Reserved	
FR37604	AX5_ERR_INFO_1	Axis 5: Error Detail Information 1	
FR37605	AX5_ERR_INFO_2	Axis 5: Error Detail Information 2	
FR37606	AX5_WARN_INFO_1	Axis 5: Warning Detail Information 1	
-R37607	AX5_WARN_INFO_2	Axis 5: Warning Detail Information 2	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R37608 R37611		Reserved	
-R37612	AX5_AX_CTRL	Axis 5: Axis Control	
-R37613	AX5_WARN_CODE	Axis 5: Axis Warning Code	
FR37614		Axis 5: Command Coordinate (Low word)	
-R37615		Axis 5: Command Coordinate (High word)	
-R37616		Axis 5: Command Speed (Low word)	
-R37617		Axis 5: Command Speed (High word)	
-R37618		Axis 5: Command Position (Low word)	
-R37619		Axis 5: Command Position (High word)	
-R37620	AX5_POSI_CUR_PT_NUM	Axis 5: Positioning Current Point No.	
-R37621		Axis 5: Current Coordinate (Low word)	
-R37622		Axis 5: Current Coordinate (High word)	
FR37623	AX5 SPD	Axis 5: Feedback Speed Monitor (Low word)	
FR37624	AXS_SPD	Axis 5: Feedback Speed Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37625	AX5_POSI_DEV	Axis 5: Position Deviation Monitor (Low word)	
-R37626		Axis 5: Position Deviation Monitor (High word)	
-R37627	AX5_DRIVE_DI	Axis 5: Digital Input from Driver (Low word)	
-R37628		Axis 5: Digital Input from Driver (High word)	
-R37629		Axis 5: Current Flow ID	
-R37630	AX5_CNTA_OUT	Axis 5: Contact Output (Low word)	
FR37631		Axis 5: Contact Output (High word)	
-R37632	AX5_CUR_TORQ	Axis 5: Current Torque	
-R37633	AX5_ECAM_IN_PHASE	Axis 5: E-Cam Input Phase (Low word)	
FR37634		Axis 5: E-Cam Input Phase (High word)	
TR37635	AX5_ORG_POSI	Axis 5: Origin Position (Low word)	
FR37636		Axis 5: Origin Position (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R37637	Axis 5: Axis Status Word	Bit0:M11400 Bit12:M11412 After Bit13 Reserved
-R37638		
-R37639		
FR37640	Axis 5: Main Clutch Output Phase (Low word)	
FR37641	Axis 5: Main Clutch Output Phase (High word)	
FR37642	Axis 5: Probe 1 Coordinate (Low Word)	
FR37643	Axis 5: Probe 1 Coordinate (High Word)	
FR37644	Axis 5: Probe 2 Coordinate (Low Word)	
FR37645	Axis 5: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R37646 } \\ & \sim \\ & \text { R37729 } \end{aligned}$	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R37730		Axis 6: Axis properties	
R37731 R37733		Reserved	
R37734	AX6_CTRL_MODE	Axis 6: Current Control Mode	
$\begin{aligned} & \text { R37735 } \\ & \sim \\ & \text { R37753 } \end{aligned}$		Reserved	
-R37754	AX6_ERR_INFO_1	Axis 6: Error Detail Information 1	
FR37755	AX6_ERR_INFO_2	Axis 6: Error Detail Information 2	
-R37756	AX6_WARN_INFO_1	Axis 6: Warning Detail Information 1	
-R37757	AX6_WARN_INFO_2	Axis 6: Warning Detail Information 2	
R37758 R37761		Reserved	
R37762	AX6_AX_CTRL	Axis 6: Axis Control	
R37763	AX6_WARN_CODE	Axis 6: Axis Warning Code	
FR37764		Axis 6: Command Coordinate (Low word)	
-R37765		Axis 6: Command Coordinate (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R37766	AX6_CMD_SPD	Axis 6: Command Speed (Low word)	
R37767		Axis 6: Command Speed (High word)	
R37768	AX6_CMD_POSI	Axis 6: Command Position (Low word)	
VR37769		Axis 6: Command Position (High word)	
F37770	AX6_POSI_CUR_PT_NUM	Axis 6: Positioning Current Point No.	
FR37771	AX6_CUR_COORD	Axis 6: Current Coordinate (Low word)	
FR37772		Axis 6: Current Coordinate (High word)	
F 77773	AX6_SPD	Axis 6: Feedback Speed Monitor (Low word)	
FR37774		Axis 6: Feedback Speed Monitor (High word)	
R37775	AX6_POSI_DEV	Axis 6: Position Deviation Monitor (Low word)	
R37776		Axis 6: Position Deviation Monitor (High word)	
R37777	AX6_DRIVE_DI	Axis 6: Digital Input from Driver (Low word)	
FR37778		Axis 6: Digital Input from Driver (High word)	
R37779		Axis 6: Current Flow ID	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R37792		Axis 6: Probe 1 Coordinate (Low Word)	
FR37793		Axis 6: Probe 1 Coordinate (High Word)	
FR37794		Axis 6: Probe 2 Coordinate (Low Word)	
FR37795		Axis 6: Probe 2 Coordinate (High Word)	
R37796 R37879		Reserved	
-R37880		Axis 7: Axis properties	
$\begin{aligned} & \text { R37881 } \\ & \sim \\ & \text { R37883 } \end{aligned}$		Reserved	
FR37884	AX7_CTRL_MODE	Axis 7: Current Control Mode	
$\begin{aligned} & \text { R37885 } \\ & \sim \\ & \text { R37903 } \end{aligned}$		Reserved	
F37904	AX7_ERR_INFO_1	Axis 7: Error Detail Information 1	
-R37905	AX7_ERR_INFO_2	Axis 7: Error Detail Information 2	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37923	AX7_SPD	Axis 7: Feedback Speed Monitor (Low word)	
FR37924		Axis 7: Feedback Speed Monitor (High word)	
-R37925	AX7_POSI_DEV	Axis 7: Position Deviation Monitor (Low word)	
-R37926		Axis 7: Position Deviation Monitor (High word)	
-R37927	AX7_DRIVE_DI	Axis 7: Digital Input from Driver (Low word)	
-R37928		Axis 7: Digital Input from Driver (High word)	
-R37929		Axis 7: Current Flow ID	
-R37930	AX7_CNTA_OUT	Axis 7: Contact Output (Low word)	
-R37931		Axis 7: Contact Output (High word)	
R37932	AX7_CUR_TORQ	Axis 7: Current Torque	
FR37933	AX7_ECAM_IN_PHASE	Axis 7: E-Cam Input Phase (Low word)	
-R37934		Axis 7: E-Cam Input Phase (High word)	
-R37935	AX7_ORG_POSI	Axis 7: Origin Position (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR37936	Axis 7: Origin Position (High word)	
-R37937		
F37938	Axis 7: Axis Status Word	Bit12:M11492
		Reserved
FR37940	Axis 7: Main Clutch Output Phase (Low word)	
FR37941	Axis 7: Main Clutch Output Phase (High word)	
FR37942	Axis 7: Probe 1 Coordinate (Low Word)	
FR37943	Axis 7: Probe 1 Coordinate (High Word)	
-R37944	Axis 7: Probe 2 Coordinate (Low Word)	
-R37945	Axis 7: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R37946 } \\ & \sim \\ & \text { R38029 } \end{aligned}$	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38030		Axis 8: Axis properties	
$\begin{aligned} & \text { R38031 } \\ & \sim \\ & \text { R38033 } \end{aligned}$		Reserved	
FR38034	AX8_CTRL_MODE	Axis 8: Current Control Mode	
R38035 R38053		Reserved	
FR38054	AX8_ERR_INFO_1	Axis 8: Error Detail Information 1	
-R38055	AX8_ERR_INFO_2	Axis 8: Error Detail Information 2	
FR38056	AX8_WARN_INFO_1	Axis 8: Warning Detail Information 1	
-R38057	AX8_WARN_INFO_2	Axis 8: Warning Detail Information 2	
$\begin{aligned} & \text { R38058 } \\ & \sim \\ & \text { R38061 } \end{aligned}$		Reserved	
R38062	AX8_AX_CTRL	Axis 8: Axis Control	
R 38063	AX8_WARN_CODE	Axis 8: Axis Warning Code	
FR38064		Axis 8: Command Coordinate (Low word)	
F 78065		Axis 8: Command Coordinate (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

F 38066	AX8_CMD_SPD	Axis 8: Command Speed (Low word)	
FR38067		Axis 8: Command Speed (High word)	
R 38068	AX8_CMD_POSI	Axis 8: Command Position (Low word)	
F38069		Axis 8: Command Position (High word)	
FR38070	AX8_POSI_CUR_PT_NUM	Axis 8: Positioning Current Point No.	
FR38071	AX8_CUR_COORD	Axis 8: Current Coordinate (Low word)	
-R38072		Axis 8: Current Coordinate (High word)	
R38073	AX8_SPD	Axis 8: Feedback Speed Monitor (Low word)	
F38074		Axis 8: Feedback Speed Monitor (High word)	
R38075	AX8_POSI_DEV	Axis 8: Position Deviation Monitor (Low word)	
R38076		Axis 8: Position Deviation Monitor (High word)	
F 38077	AX8_DRIVE_DI	Axis 8: Digital Input from Driver (Low word)	
R38078		Axis 8: Digital Input from Driver (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR38092		Axis 8: Probe 1 Coordinate (Low Word)	
FR38093		Axis 8: Probe 1 Coordinate (High Word)	
FR38094		Axis 8: Probe 2 Coordinate (Low Word)	
FR38095		Axis 8: Probe 2 Coordinate (High Word)	
R38096 R38179		Reserved	
R38180		Axis 9: Axis properties	
R38181 R38183		Reserved	
R38184	AX9_CTRL_MODE	Axis 9: Current Control Mode	
R38185 R38203		Reserved	
R38204	AX9_ERR_INFO_1	Axis 9: Error Detail Information 1	
FR38205	AX9_ERR_INFO_2	Axis 9: Error Detail Information 2	
FR38206	AX9_WARN_INFO_1	Axis 9: Warning Detail Information 1	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

TR38207	AX9_WARN_INFO_2	Axis 9: Warning Detail Information 2	
		Reserved	
-R38212	AX9_AX_CTRL	Axis 9: Axis Control	
R38213	AX9_WARN_CODE	Axis 9: Axis Warning Code	
-R38214		Axis 9: Command Coordinate (Low word)	
-R38215		Axis 9: Command Coordinate (High word)	
FR38216		Axis 9: Command Speed (Low word)	
-R38217		Axis 9: Command Speed (High word)	
-R38218		Axis 9: Command Position (Low word)	
-R38219		Axis 9: Command Position (High word)	
-R38220	AX9_POSI_CUR_PT_NUM	Axis 9: Positioning Current Point No.	
-R38221		Axis 9: Current Coordinate (Low word)	
-R38222		Axis 9: Current Coordinate (High word)	
-R38223	AX9_SPD	Axis 9: Feedback Speed Monitor (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R38224		Axis 9: Feedback Speed Monitor (High word)	
TR38225	AX9_POSI_DEV	Axis 9: Position Deviation Monitor (Low word)	
-R38226		Axis 9: Position Deviation Monitor (High word)	
-R38227	AX9_DRIVE_DI	Axis 9: Digital Input from Driver (Low word)	
R 38228		Axis 9: Digital Input from Driver (High word)	
R38229		Axis 9: Current Flow ID	
R38230	AX9_CNTA_OUT	Axis 9: Contact Output (Low word)	
R38231		Axis 9: Contact Output (High word)	
R38232	AX9_CUR_TORQ	Axis 9: Current Torque	
R38233	AX9_ECAM_IN_PHASE	Axis 9: E-Cam Input Phase (Low word)	
R38234		Axis 9: E-Cam Input Phase (High word)	
R38235	AX9_ORG_POSI	Axis 9: Origin Position (Low word)	
R38236		Axis 9: Origin Position (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38331 R38333		Reserved	
-R38334	AX10_CTRL_MODE	Axis 10: Current Control Mode	
$\begin{aligned} & \text { R38335 } \\ & \sim \\ & \text { R38353 } \end{aligned}$		Reserved	
-R38354	AX10_ERR_INFO_1	Axis 10: Error Detail Information 1	
-R38355	AX10_ERR_INFO_2	Axis 10: Error Detail Information 2	
-R38356	AX10_WARN_INFO_1	Axis 10: Warning Detail Information 1	
-R38357	AX10_WARN_INFO_2	Axis 10: Warning Detail Information 2	
$\begin{aligned} & \text { R38358 } \\ & \sim \\ & \text { R38361 } \end{aligned}$		Reserved	
R38362	AX10_AX_CTRL	Axis 10: Axis Control	
-R38363	AX10_WARN_CODE	Axis 10: Axis Warning Code	
-R38364		Axis 10: Command Coordinate (Low word)	
-R38365		Axis 10: Command Coordinate (High word)	
-R38366		Axis 10: Command Speed (Low word)	
-R38367	AX10_CMD_SPD	Axis 10: Command Speed (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR38368	AX10_CMD_POSI	Axis 10: Command Posit5on (Low word)	
FR38369		Axis 10: Command Position (High word)	
F 38370	$\begin{aligned} & \text { AX10_POSI_CUR_PT_NU } \\ & \mathrm{M} \end{aligned}$	Axis 10: Positioning Current Point No.	
FR38371	AX10_CUR_COORD	Axis 10: Current Coordinate (Low word)	
FR38372		Axis 10: Current Coordinate (High word)	
FR38373	AX10_SPD	Axis 10: Feedback Speed Monitor (Low word)	
FR38374		Axis 10: Feedback Speed Monitor (High word)	
-R38375	AX10_POSI_DEV	Axis 10: Position Deviation Monitor (Low word)	
FR38376		Axis 10: Position Deviation Monitor (High word)	
-R38377	AX10_DRIVE_DI	Axis 10: Digital Input from Driver (Low word)	
FR38378		Axis 10: Digital Input from Driver (High word)	
FR38379		Axis 10: Current Flow ID	
FR38380	AX10_CNTA_OUT	Axis 10: Contact Output (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC
$\left.\begin{array}{|l|l|l|l|}\hline \text { R38394 } & & \begin{array}{l}\text { Axis 10: Probe 2 } \\ \text { Coordinate (Low Word) }\end{array} & \\ \hline \text { R38395 } & & \begin{array}{l}\text { Axis 10: Probe 2 } \\ \text { Coordinate } \\ \text { (High Word) }\end{array} & \\ \hline \begin{array}{l}\text { R38396 } \\ \sim\end{array} & & \text { Reserved } & \\ \hline \text { R38479 } & & \text { Axis 11: Axis properties }\end{array}\right]$

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38508 R38511		Reserved	
R38512	AX11_AX_CTRL	Axis 11: Axis Control	
R38513	AX11_WARN_CODE	Axis 11: Axis Warning Code	
-R38514	AX11_CMD_COORD	Axis 11: Command Coordinate (Low word)	
-R38515		Axis 11: Command Coordinate (High word)	
-R38516	AX11_CMD_SPD	Axis 11: Command Speed (Low word)	
-R38517		Axis 11: Command Speed (High word)	
-R38518	AX11_CMD_POSI	Axis 11: Command Position (Low word)	
-R38519		Axis 11: Command Position (High word)	
-R38520	$\begin{aligned} & \text { AX11_POSI_CUR_PT_NU } \\ & \mathrm{M} \end{aligned}$	Axis 11: Positioning Current Point No.	
-R38521	AX11_CUR_COORD	Axis 11: Current Coordinate (Low word)	
-R38522		Axis 11: Current Coordinate (High word)	
-R38523	AX11_SPD	Axis 11: Feedback Speed Monitor (Low word)	
-R38524		Axis 11: Feedback Speed Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R38525	AX11_POSI_DEV	Axis 11: Position Deviation Monitor (Low word)
-R38526		Axis 11: Position Deviation Monitor (High word)
-R38527	AX11_DRIVE_DI	Axis 11: Digital Input from Driver (Low word)
-R38528		Axis 11: Digital Input from Driver (High word)
-R38529		Axis 11: Current Flow ID
-R38530	AX11_CNTA_OUT	Axis 11: Contact Output (Low word)
-R38531		Axis 11: Contact Output (High word)
-R38532	AX11_CUR_TORQ	Axis 11: Current Torque
-R38533	AX11_ECAM_IN_PHASE	Axis 11: E-Cam Input Phase (Low word)
FR38534		Axis 11: E-Cam Input Phase (High word)
-R38535	AX11_ORG_POSI	Axis 11: Origin Position (Low word)
-R38536		Axis 11: Origin Position (High word)

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R38537	Axis 11: Axis Status Word	Bit0:M11640 Bit12:M11652 After Bit13 Reserved
-R38538		
-R38539		
TR38540	Axis 11: Main Clutch Output Phase (Low word)	
TR38541	Axis 11: Main Clutch Output Phase (High word)	
TR38542	Axis 11: Probe 1 Coordinate (Low Word)	
F38543	Axis 11: Probe 1 Coordinate (High Word)	
FR38544	Axis 11: Probe 2 Coordinate (Low Word)	
TR38545	Axis 11: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R38546 } \\ & \sim \\ & \text { R38629 } \end{aligned}$	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38630		Axis 12: Axis properties	
$\begin{aligned} & \text { R38631 } \\ & \sim \\ & \text { R38633 } \end{aligned}$		Reserved	
FR38634	AX12_CTRL_MODE	Axis 12: Current Control Mode	
$\begin{aligned} & \text { R38635 } \\ & \sim \\ & \text { R38653 } \end{aligned}$		Reserved	
-R38654	AX12_ERR_INFO_1	Axis 12: Error Detail Information 1	
-R38655	AX12_ERR_INFO_2	Axis 12: Error Detail Information 2	
-R38656	AX12_WARN_INFO_1	Axis 12: Warning Detail Information 1	
-R38657	AX12_WARN_INFO_2	Axis 12: Warning Detail Information 2	
$\begin{aligned} & \text { R38658 } \\ & \sim \\ & \text { R38661 } \end{aligned}$		Reserved	
R38662	AX12_AX_CTRL	Axis 12: Axis Control	
R38663	AX12_WARN_CODE	Axis 12: Axis Warning Code	
-R38664	AX12_CMD_COORD	Axis 12: Command Coordinate (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R38665		Axis 12: Command Coordinate (High word)	
-R38666		Axis 12: Command Speed (Low word)	
-R38667		Axis 12: Command Speed (High word)	
FR38668		Axis 12: Command Position (Low word)	
FR38669		Axis 12: Command Position (High word)	
-R38670	$\begin{aligned} & \text { AX12_POSI_CUR_PT_NU } \\ & \mathrm{M} \end{aligned}$	Axis 12: Positioning Current Point No.	
-R38671		Axis 12: Current Coordinate (Low word)	
-R38672		Axis 12: Current Coordinate (High word)	
FR38673		Axis 12: Feedback Speed Monitor (Low word)	
-R38674		Axis 12: Feedback Speed Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R38675	AX12_POSI_DEV	Axis 12: Position Deviation Monitor (Low word)	
FR38676		Axis 12: Position Deviation Monitor (High word)	
-R38677	AX12_DRIVE_DI	Axis 12: Digital Input from Driver (Low word)	
FR38678		Axis 12: Digital Input from Driver (High word)	
R38679		Axis 12: Current Flow ID	
FR38680	AX12_CNTA_OUT	Axis 12: Contact Output (Low word)	
-R38681		Axis 12: Contact Output (High word)	
-R38682	AX12_CUR_TORQ	Axis 12: Current Torque	
FR38683	AX12_ECAM_IN_PHASE	Axis 12: E-Cam Input Phase (Low word)	
FR38684		Axis 12: E-Cam Input Phase (High word)	
FR38685	AX12_ORG_POSI	Axis 12: Origin Position (Low word)	
FR38686		Axis 12: Origin Position (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38780		Axis 13: Axis properties	
$\begin{aligned} & \text { R38781 } \\ & \sim \\ & \text { R38783 } \end{aligned}$		Reserved	
R 38784	AX13_CTRL_MODE	Axis 13: Current Control Mode	
R38785 R38803		Reserved	
R38804	AX13_ERR_INFO_1	Axis 13: Error Detail Information 1	
R38805	AX13_ERR_INFO_2	Axis 13: Error Detail Information 2	
-R38806	AX13_WARN_INFO_1	Axis 13: Warning Detail Information 1	
-R38807	AX13_WARN_INFO_2	Axis 13: Warning Detail Information 2	
$\begin{aligned} & \text { R38808 } \\ & \sim \\ & \text { R38811 } \end{aligned}$		Reserved	
R38812	AX13_AX_CTRL	Axis 13: Axis Control	
R38813	AX13_WARN_CODE	Axis 13: Axis Warning Code	
FR38814		Axis 13: Command Coordinate (Low word)	
F38815		Axis 13: Command Coordinate (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

F38816	AX13_CMD_SPD	Axis 13: Command Speed (Low word)	
F38817		Axis 13: Command Speed (High word)	
R38818	AX13_CMD_POSI	Axis 13: Command Position (Low word)	
FR38819		Axis 13: Command Position (High word)	
F38820	AX13_POSI_CUR_PT_NU M	Axis 13: Positioning Current Point No.	
FR38821	AX13_CUR_COORD	Axis 13: Current Coordinate (Low word)	
F38822		Axis 13: Current Coordinate (High word)	
F38823	AX13_SPD	Axis 13: Feedback Speed Monitor (Low word)	
FR38824		Axis 13: Feedback Speed Monitor (High word)	
FR38825	AX13_POSI_DEV	Axis 13: Position Deviation Monitor (Low word)	
-R38826		Axis 13: Position Deviation Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R38827	AX13_DRIVE_DI	Axis 13: Digital Input from Driver (Low word)	
FR38828		Axis 13: Digital Input from Driver (High word)	
-R38829		Axis 13: Current Flow ID	
-R38830	AX13_CNTA_OUT	Axis 13: Contact Output (Low word)	
-R38831		Axis 13: Contact Output (High word)	
R38832	AX13_CUR_TORQ	Axis 13: Current Torque	
-R38833	AX13_ECAM_IN_PHASE	Axis 13: E-Cam Input Phase (Low word)	
F38834		Axis 13: E-Cam Input Phase (High word)	
-R38835	AX13_ORG_POSI	Axis 13: Origin Position (Low word)	
F38836		Axis 13: Origin Position (High word)	
-R38837			Bit0:M11720 Bit12:M11732 After Bit13 Reserved
-R38838		Axis 13: Axis Status Word	
-R38839			
-R38840		Axis 13: Main Clutch Output Phase (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38841		Axis 13: Main Clutch Output Phase (High word)	
R38842		Axis 13: Probe 1 Coordinate (Low Word)	
F38843		Axis 13: Probe 1 Coordinate (High Word)	
R38844		Axis 13: Probe 2 Coordinate (Low Word)	
R38845		Axis 13: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R38846 } \\ & \sim \\ & \text { R38929 } \end{aligned}$		Reserved	
R38930		Axis 14: Axis properties	
$\begin{aligned} & \text { R38931 } \\ & \sim \\ & \text { R38933 } \end{aligned}$		Reserved	
F38934	AX14_CTRL_MODE	Axis 14: Current Control Mode	
$\begin{aligned} & \text { R38935 } \\ & \sim \\ & \text { R38953 } \end{aligned}$		Reserved	
R38954	AX14_ERR_INFO_1	Axis 14: Error Detail Information 1	
R38955	AX14_ERR_INFO_2	Axis 14: Error Detail Information 2	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR38956	AX14_WARN_INFO_1	Axis 14: Warning Detail Information 1
FR38957	AX14_WARN_INFO_2	Axis 14: Warning Detail Information 2
		Reserved
-R38962	AX14_AX_CTRL	Axis 14: Axis Control
R 38963	AX14_WARN_CODE	Axis 14: Axis Warning Code
F 38964		Axis 14: Command Coordinate (Low word)
FR38965		Axis 14: Command Coordinate (High word)
F 38966		Axis 14: Command Speed (Low word)
FR38967		Axis 14: Command Speed (High word)
FR38968		Axis 14: Command Position (Low word)
FR38969		Axis 14: Command Position (High word)
FR38970	$\begin{aligned} & \text { AX14_POSI_CUR_PT_NU } \\ & \mathrm{M} \end{aligned}$	Axis 14: Positioning Current Point No.
-R38971	AX14_CUR_COORD	Axis 14: Current Coordinate (Low word)

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR38972		Axis 14: Current Coordinate (High word)	
FR38973	AX14_SPD	Axis 14: Feedback Speed Monitor (Low word)	
FR38974		Axis 14: Feedback Speed Monitor (High word)	
-R38975	AX14_POSI_DEV	Axis 14: Position Deviation Monitor (Low word)	
FR38976		Axis 14: Position Deviation Monitor (High word)	
-R38977	AX14_DRIVE_DI	Axis 14: Digital Input from Driver (Low word)	
FR38978		Axis 14: Digital Input from Driver (High word)	
-R38979		Axis 14: Current Flow ID	
-R38980	AX14_CNTA_OUT	Axis 14: Contact Output (Low word)	
FR38981		Axis 14: Contact Output (High word)	
F38982	AX14_CUR_TORQ	Axis 14: Current Torque	
F38983	AX14_ECAM_IN_PHASE	Axis 14: E-Cam Input Phase (Low word)	
-R38984		Axis 14: E-Cam Input Phase (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R38985	AX14_ORG_POSI	Axis 14: Origin Position (Low word)	
-R38986		Axis 14: Origin Position (High word)	
R38987			Bit0:M11760 Bit12:M11772 After Bit13 Reserved
-R38988		Axis 14: Axis Status Word	
-R38989			
R38990		Axis 14: Main Clutch Output Phase (Low word)	
R38991		Axis 14: Main Clutch Output Phase (High word)	
R38992		Axis 14: Probe 1 Coordinate (Low Word)	
\%38993		Axis 14: Probe 1 Coordinate (High Word)	
R38994		Axis 14: Probe 2 Coordinate (Low Word)	
R38995		Axis 14: Probe 2 Coordinate (High Word)	
R38996 R39079		Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

R39080		Axis 15: Axis properties	
$\begin{array}{\|l} \text { R39081 } \\ \sim \\ \text { R39083 } \end{array}$		Reserved	
F 79084	AX15_CTRL_MODE	Axis 15: Current Control Mode	
$\begin{aligned} & \text { R39085 } \\ & \sim \\ & \text { R39103 } \end{aligned}$		Reserved	
R39104	AX15_ERR_INFO_1	Axis 15: Error Detail Information 1	
R39105	AX15_ERR_INFO_2	Axis 15: Error Detail Information 2	
R39106	AX15_WARN_INFO_1	Axis 15: Warning Detail Information 1	
-R39107	AX15_WARN_INFO_2	Axis 15: Warning Detail Information 2	
$\begin{aligned} & \text { R39108 } \\ & \sim \\ & \text { R39111 } \end{aligned}$		Reserved	
-R39112	AX15_AX_CTRL	Axis 15: Axis Control	
R39113	AX15_WARN_CODE	Axis 15: Axis Warning Code	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R39114	AX15_CMD_COORD	Axis 15: Command Coordinate (Low word)	
-R39115		Axis 15: Command Coordinate (High word)	
FR39116	AX15_CMD_SPD	Axis 15: Command Speed (Low word)	
-R39117		Axis 15: Command Speed (High word)	
FR39118	AX15_CMD_POSI	Axis 15: Command Position (Low word)	
-R39119		Axis 15: Command Position (High word)	
-R39120	$\begin{aligned} & \text { AX15_POSI_CUR_PT_NU } \\ & \mathrm{M} \end{aligned}$	Axis 15: Positioning Current Point No.	
-R39121	AX15_CUR_COORD	Axis 15: Current Coordinate (Low word)	
-R39122		Axis 15: Current Coordinate (High word)	
FR39123	AX15_SPD	Axis 15: Feedback Speed Monitor (Low word)	
-R39124		Axis 15: Feedback Speed Monitor (High word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R39125	AX15_POSI_DEV	Axis 15: Position Deviation Monitor (Low word)	
FR39126		Axis 15: Position Deviation Monitor (High word)	
「R39127	AX15_DRIVE_DI	Axis 15: Digital Input from Driver (Low word)	
-R39128		Axis 15: Digital Input from Driver (High word)	
-R39129		Axis 15: Current Flow ID	
-R39130	AX15_CNTA_OUT	Axis 15: Contact Output (Low word)	
-R39131		Axis 15: Contact Output (High word)	
FR39132	AX15_CUR_TORQ	Axis 15: Current Torque	
-R39133	AX15_ECAM_IN_PHASE	Axis 15: E-Cam Input Phase (Low word)	
-R39134		Axis 15: E-Cam Input Phase (High word)	
-R39135	AX15_ORG_POSI	Axis 15: Origin Position (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR39136	Axis 15: Origin Position (High word)	
-R39137		
FR39138	Axis 15: Axis Status Word	Bit12:M11812 After Bit13 Reserved
-R39139		
-R39140	Axis 15: Main Clutch Output Phase (Low word)	
-R39141	Axis 15: Main Clutch Output Phase (High word)	
TR39142	Axis 15: Probe 1 Coordinate (Low Word)	
FR39143	Axis 15: Probe 1 Coordinate (High Word)	
TR39144	Axis 15: Probe 2 Coordinate (Low Word)	
R39145	Axis 15: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R39146 } \\ & \sim \\ & \text { R39229 } \end{aligned}$	Reserved	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

FR39230		Axis 16: Axis properties	
$\begin{aligned} & \text { R39231 } \\ & \sim \\ & \text { R39233 } \end{aligned}$		Reserved	
FR39234	AX16_CTRL_MODE	Axis 16: Current Control Mode	
R39235 R39253		Reserved	
VR39254	AX16_ERR_INFO_1	Axis 16: Error Detail Information 1	
-R39255	AX16_ERR_INFO_2	Axis 16: Error Detail Information 2	
-R39256	AX16_WARN_INFO_1	Axis 16: Warning Detail Information 1	
-R39257	AX16_WARN_INFO_2	Axis 16: Warning Detail Information 2	
$\begin{aligned} & \text { R39258 } \\ & \sim \\ & \text { R39261 } \end{aligned}$		Reserved	
VR39262	AX16_AX_CTRL	Axis 16: Axis Control	
-R39263	AX16_WARN_CODE	Axis 16: Axis Warning Code	
VR39264	AX16_CMD_COORD	Axis 16: Command Coordinate (Low word)	

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

-R39277	AX16_DRIVE_DI	Axis 16: Digital Input from Driver (Low word)	
-R39278		Axis 16: Digital Input from Driver (High word)	
-R39279		Axis 16: Current Flow ID	
-R39280	AX16_CNTA_OUT	Axis 16: Contact Output (Low word)	
-R39281		Axis 16: Contact Output (High word)	
FR39282	AX16_CUR_TORQ	Axis 16: Current Torque	
R39283	AX16_ECAM_IN_PHASE	Axis 16: E-Cam Input Phase (Low word)	
F39284		Axis 16: E-Cam Input Phase (High word)	
-R39285	AX16_ORG_POSI	Axis 16: Origin position (Low word)	
F 39286		Axis 16: Origin position (High word)	
-R39287		Axis 16: Axis Status Word	Bit0:M11840 Bit12:M11852

Chapter 2 Details of Memory Configuration, Single Point (Digital) and Register in PLC

VR39288		After Bit13 Reserved
-R39289		
FR39290	Axis 16: Main Clutch Output Phase (Low word)	
-R39291	Axis 16: Main Clutch Output Phase (High word)	
-R39292	Axis 16: Probe 1 Coordinate (Low Word)	
FR39293	Axis 16: Probe 1 Coordinate (High Word)	
FR39294	Axis 16: Probe 2 Coordinate (Low Word)	
-R39295	Axis 16: Probe 2 Coordinate (High Word)	
$\begin{aligned} & \text { R39296 } \\ & \sim \\ & \text { R39379 } \end{aligned}$	Reserved	
$\begin{aligned} & \text { R39380 } \\ & \sim \\ & \text { R43193 } \end{aligned}$	Reserved	

Table 1 Motion special register list

3
 M SERIES PLC Instruction Lists

3-2 Function Instruction 5

3-1 Sequential Instructions

Operand	Symbol	Function	Instruction Type
$\begin{gathered} X, Y, M, \\ S, T, C \end{gathered}$	$\cdot \stackrel{ }{-}$	Starting a network with a normally open (A) contact	Network starting instructions
	+ $/ 1 / \downarrow$	Starting a network with a normally closed (B) contact	
	- $\|\uparrow\|-$	Starting a network with a differential up (TU) contact	
	$+\downarrow \downarrow$	Starting a network with a differential down (TD) contact	
	\ldots	Starting a network with a open circuit contact	
		Starting a network with a short circuit contact	
$\begin{gathered} \mathrm{X}, \mathrm{Y}, \mathrm{M} \\ \mathrm{~S}, \mathrm{~T}, \mathrm{C} \end{gathered}$	$-\vdash$	Starting a relay circuit from origin or branch line with a normally open contact	Origin or branch line starting instructions
	- / -	Starting a relay circuit from origin or branch line with a normally closed contact	
	- \|个 -	Starting a relay circuit from origin or branch line with a differential up contact	
	- $\downarrow \downarrow$	Starting a relay circuit from origin or branch line with a differential down contact	
		Starting a relay circuit from origin or branch line with a open circuit contact	
		Starting a relay circuit from origin or branch line with a short circuit contact	
$\begin{gathered} \mathrm{X}, \mathrm{Y}, \mathrm{M}, \\ \mathrm{~S}, \mathrm{~T}, \mathrm{C} \end{gathered}$	$\neg \vdash$	Serial connection of normally open contact	Serial connection instructions
	\cdots	Serial connection of normally close contact	

Chapter 3 M SERIES PLC Instruction Lists

Operand	Symbol	Function	Instruction Type
	. (s)	Set a coil	
	(R)	Reset a coil	

sequential instructions list
※The 36 sequential instructions listed above are all applicable to every models of M - SERIES PLC.

3-2 Function Instruction

There are more than 100 different M SERIES PLC function instructions. If put the D and P derivative instructions into account, the total number of instructions is over 200. On top of these, many function instructions have multiple input controls (up to 4 inputs) which can have up to 8 different types of operation mode combinations. Hence, the size of M SERIES PLC instruction sets is in fact not smaller than that of a large PLC. Having powerful instruction functions, though may help for establishing the complicated control applications, but also may impose a heavy burden on those users of small type PLC's. For ease of use, M-Series PLC function instructions are divided into two groups, the Basic function group (The instructions attached with " \star " symbol are basic functions which amounts to 26 function instructions and 4 SFC instructions) and the advanced function group.

- General Timer / Counter Function Instructions

FUN No	Name	Operand	Derivative Instruction	Function descriptions
\star	T nnnn	PV		General timer instructions ("nnnn" range 0~1023, total 1024)
\star	C nnnn	PV		General counter instructions ("nnnn" range 0~1279, total 1280)
$\star 7$	UDCTR	CV,PV	DP	16 -Bit or 32-Bit up/down counter

General Timer / Counter Function Instructions list

- Single Operand Function Instructions

$\star 4$	DIFU	D	P	To get the up differentiation of a D relay and store the result to D
$\star 5$	DIFD	D	P	To get the down differentiation of a D relay and store the result to D
$\star 10$	TOGG	D	P	Toggle the ON/OFF status of the D relay

Single Operand Function Instructions List

- Setting / Resetting Instructions

\star	SET	D	DP	Set all bits of register or a discrete point to 1
\star	RST	D	DP	Clear all bits of register or a discrete point to 0
114	Z-W R	N	P	Zone set or clear

Setting / Resetting Instructions List

- SFC Instructions

\star	STP	Snnnn		STEP declaration
\star	STPEND			End of the STEP program
\star	TO	Snnnn		STEP divergent instruction
\star	FROM	Snnnn		STEP convergent instruction

SFC Instructions List

- Mathematical Operation Instructions

$\star 11$	(+)	Sa,Sb, D	DP	Perform addition of Sa and Sb and then store the result to D
$\star 12$	(-)	Sa,Sb, D	D P	Perform subtraction of Sa and Sb and then store the result to D
$\star 13$	(*)	Sa,Sb, D	DP	Perform multiplication of Sa and Sb and then store the result to D
$\star 14$	(/)	Sa,Sb, D	DP	Perform division of Sa and Sb and then store the result to D
$\star 15$	(+1)	D	DP	Adds 1 to the D value
$\star 16$	(-1)	D	DP	Subtracts 1 from the D value
24	SUM	S,N,D	$D P$	Take the sum of the successive N values beginning from S and store it in D
25	MEAN	S,N,D	DP	Take the mean average of the successive N values beginning from S and store it in D

27	NEG	D	DP	Take the 2's complement (negative number) of the D value and store it back in D
28	ABS	D	DP	Take the absolute value of D and store it back in D
38	PID2	$\begin{aligned} & \text { ID,CH, SR,OR, } \\ & \text { PR,WR } \end{aligned}$		PID operation
33	LCNV	Md,S,Ts,D,L	P	Linear Conversion
34	MLC	$\begin{aligned} & \text { Rs,SI,Tx,Ty,TI, } \\ & D \end{aligned}$	P	Multiple Linear Conversion
200	$1 \rightarrow F$	S, D	DP	Integer to floating point number conversion
201	$\mathrm{F} \rightarrow \mathrm{I}$	S, D	DP	Floating point number to integer conversion
202	FADD	Sa,Sb, D	P	Addition of floating point number
203	FSUB	Sa,Sb,D	P	Subtraction of floating point number
204	FMUL	Sa,Sb,D	P	Multiplication of floating point number
205	FDIV	Sa,Sb,D	P	Division of floating point number
206	FCMP	Sa,Sb	P	Comparison of floating point number and then store the result to FOO ~ FO2
207	FZCP	S,SU,SL	P	Comparison of floating point number S to the zones formed by the upper limit SU and the lower limit SL and then store the result to FOO ~ FO2
209	FSIN	S, D	P	SIN trigonometric function
210	FCOS	S, D	P	COS trigonometric function
211	FTAN	S, D	P	TAN trigonometric function
212	FNEG	D	P	Change sign of floating point number
213	FABS	D	P	Take absolute value of floating point number

Mathematical Operation Instructions List

- Logical Operation Instructions

$\star 18$	AND	Sa,Sb,D	D P	Perform logical AND for Sa and Sb and store the result to D
$\star 19$	OR	Sa,Sb,D	D P	Perform logical OR for Sa and Sb and store the result to D
35	XOR	Sa,Sb,D	D P	Take the result of the Exclusive OR logical operation made between Sa and Sb, and store it in D
36	XNR	Sa,Sb,D	D P	Take the result of the Exclusive NOR logical operation made between Sa and Sb, and store it in D

Logical Operation Instructions List

- Comparison Instructions

$\star 17$	CMP	Sa,Sb	D P	Compare the data at Sa and data at Sb and store the result to FOO~FO2
37	ZNCMP	S,SU,SL	D P	Compare S with the zones formed by the upper limit SU and lower limit SL, and store the result to FOO~FO2

Comparison Instructions List

- In Line Comparison Instructions

170	$=$	Sa,Sb	D	Equal to compare
171	$>$	Sa,Sb	D	Greater than compare
172	$<$	Sa,Sb	D	Less than compare
173	$<>$	Sa,Sb	D	Not equal to compare
174	$>=$	Sa,Sb	D	Greater than or equal to compare
175	$=<$	Sa,Sb	D	Less than or equal to compare

In Line Comparison Instructions List

- Data Movement Instructions

$\star 88$	MOV	S,D	D P	Transfer data from S to D
$\star 9$	MOV/	S,D	D P	Invert data S, and then transfers the result to D
40	BITRD	S,N	D P	Read the status of the bits specified by N within S, and send it to FOO

41	BITWR	D,N	D P	Write the INB input status into the bits specified by N within D
42	BITMV	S,Ns,D,Nd	D P	Write the status of bit specified by Ns within S into the bit specified by Nd within D
43	NBMV	S,Ns,D,Nd	D P	Write the Ns nibble within S to the Nd nibble within D

Data Movement Instructions List

- Shifting/Rotating Instructions

$\star 6$	BSHF	D	D P	Shift left or right 1 bit of D register
51	SHFL	D,N	D P	Shift left the D register N bits and move the last shifted out bits to FOO. The empty bits will be replaced by INB input bit
52	SHFR	D,N	DP	Shift right the D register N bits and move the last shifted out bits to FOO. The empty bits will be replaced by INB input bit
53	ROTL	D,N	DP	Rotate left the D operand N bits and move the last rotated out bits to FOO
54	ROTR	D,N	DP	Rotate right the D operand N bits and move the last rotated out bits to FOO

- Code Conversion Instruction

61	\rightarrow SEC	S,D	P	Convert the time data (hours, minutes, seconds) of the three successive registers starting from S into seconds data then store to D
62	\rightarrow HMS	S,D	P	Convert the seconds data of S into time data (hours, minutes, seconds) and store the data in the three successive registers starting from D

Code Conversion Instruction List

- Flow Control Instructions

$\star 0$	MC	N		The start of master control loop
$\star 1$	MCE	N		The end of master control loop
$\star 2$	SKP	N		The start of skip loop
$\star 3$	SKPE	N		The end of skip loop
	END			End of Program
22	BREAK		Exit from FOR-NEXT loop	
65	LBL	alphanumeri		Define the label with 1~6 alphanumeric characters
66	JMP	LBL	Jump to LBL label and continues the program execution	
67	CALL	LBL	P	Call the sub-program begin with LBL label
68	RTS			Return to the calling main program from sub-program
69	RTI			Return to interrupted main program from sub-program
70	FOR	N		Define the starting point of the FOR Loop and the loop
71	NEXT			Define the end of FOR loop
199	TXTDF	LN		Ladder Program blocking function

Flow Control Instructions List

- I/O Function Instructions

74	IMDIO	D,N	\mathbf{P}	Update the I/O signal on the main unit immediately
99	TPCTL 2	ID,CH,SR,PR, OR,WR		PID control Instructions

- Cumulative Timer Function Instructions

87	T1mS	CV,PV		Cumulative timer using 1 mS as the time base
88	T10mS	CV,PV		Cumulative timer using 10 mS as the time base
89	T100mS	CV,PV		Cumulative timer using 100 mS as the time base

Cumulative Timer Function Instructions List

- Watch Dog Timer Control Function Instructions

90	WDT	N	P	Set the WDT timer time out time to N mS
91	RSWDT		P	Reset the WDT timer to 0
Watch Dog Timer Control Function Instructions List				

- High Speed Counter Control Function Instructions

92	HSCTR	CN	DP	Read the current CV value of the hardware HSCs, HSCO ~ HSC3, or HST on SOC to the corresponding CV register in the PLC respectively
93	HSCTW	S,CN,D	DP	Write the CV or PV register of HSCO ~HSC3 or HST in the PLC to CV or PV register of the hardware HSC or HST on SOC respectively

High Speed Counter Control Function Instructions List

- Ramp Up/Down Function Instructions

98	RAMP2	Om,Ta Td,Rt Rc,WR		Tracking type ramp function for analog output

Ramp Function Instructions List

- Communication Function Instructions

150	M-Bus	Pt,SR,WR	P	Modbus protocol communication instruction
151	CLINK	Pt,MD,SR,W R	P	FATEK/Generic protocol communication instruction
152	NCR			Active network communication
156	CMCTL	ID,Pt,Ts,MD, WR		Communication module instruction

Communication Function Instructions List

- Table Function Instructions

103	BT_M	Ts, Td,L	D P	Copy the entire contents of Ts to Td
107	T_FIL	Rs, Td , L	D P	Fill the table Td with Rs
113	SORT	S, D,L	D P	Sorting the registers starting from S length L and store the sorted result to D

Table Function Instructions List

- Matrix Instructions

- NC Positioning Instruction

140	HSPSO	Ps,SR,WR		HSPSO instruction of NC positioning control
141	MPARA	Ps, SR		Parameter setting instruction of NC positioning control

NC Positioning Instruction List

- Interrupt Control Instruction

145	EN	LBL	\boldsymbol{P}	Enable HSC, HST, external INT or peripheral operation
146	DIS	LBL	\mathbf{P}	Disable HSC, HST, external INT or peripheral operation

- Motion Control Instruction

176	ME_START	ID		Start the motion flow
177	ME_SYSTOP			Control motion system stop
178	ME_HOME	AX		Control the axis homing
179	ME_POS	PT		Start point position control
180	ME_JOG	AX,D,MD		Control the axis homing
182	ME_PAUSE		Pause the motion flow	
183	ME_RESUME		Resume the motion flow	
184	ME_SUSPEND		Suspend the motion flow	
185	ME_RSTALM		Reset motion alarm status	
186	MTE_TRMT	ID		Terminate the motion flow
187	MTE_Init		Servo initialization	

Motion Control Instruction list

4

Sequential Instructions

This chapter only describes the Element features and functions of sequence commands.

4-1 Element Description

4-1.1 Characteristics of $A, B, T U$ and TD Contacts

- Input XO from the input terminal block
- A contact Element status
- B contact Element status
- TU contact Element status
- TD contact Element status

Characteristics of $\mathrm{A}, \mathrm{B}, \mathrm{TU}$ and TD Contacts

The waveform shown above reveals the function of $\mathrm{A}, \mathrm{B}, \mathrm{TU}$ and TD elements by exercising the external input XO form OFF to ON then OFF.

- TU (Transition Up): This is the "Transition Up Contact". Only a rising edge ($0 \rightarrow 1$) of the referenced signal will turn on this element for one scan time.
- TD (Transition Down): This is the "Transition Down Contact". Only a falling edge ($1 \rightarrow 0$) of the referenced signal will turn on this element for one scan time.
- TU and TD contact will automatically generate the TU or TD pulse corresponding to the contacts or coils for all $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{C}$ contact or coil state changes. However, if the state change of the coil is operated by the "application Instruction" in units of 16 or 32 bits (WY $\triangle \triangle \triangle \Delta$. WM $\triangle \triangle \triangle \triangle \Delta \cdot$ WS $\triangle \triangle \Delta \triangle$), TU or TD pulses will not be generated.

Note: The "ON" maintenance time of the TU and TD elements of the M SERIES PLC relay is the first scan after the "ON" condition of the element is established (for example, the TU element changes from 0 to 1 , and the TD element changes from 1 to 0). Set it to "ON" for coil elements. Once it is set to "ON", it will be cleared to "OFF" immediately when it is scanned again. In most applications, each element will only be scanned once during the CPU problem-solving scan cycle, so the "ON" time of TU and TD elements must be equal to the scan time of the CPU. However, if it is scanned more than
once in a CPU scan cycle (such as using "immediate input" or "multiple coil output" in the program), the TU and TD states of its elements will be the first time the "ON" condition is met. Set to "ON" when the scan arrives, and clear to "OFF" immediately when the second scan arrives, and the "ON" time will be less than one CPU scan time. The TU of YO in the following illustration is that. Therefore, if the customer needs to capture the TU of YO for trigger operation, one must insert the application program in the range of YO TU "ON" to "OFF" (in this example, between b and e), otherwise he will not be able to capture any YO or TU trigger signal.

Example diagram of the contact and scan time relationship

PLC contact trigger and scan time relationship

- Besides the TU/TD instructions which can detect the status change of reference operand, M SERIES PLC also provides the instructions to detect the change of node status (power flow). For details please refer the descriptions of FUN4 (DIFU) and FUN5 (DIFD) instructions.

4-1-2 OPEN and SHORT Contact

The status of OPEN and SHORT contacts are fixed and can't be changed by any ladder instructions. Those two contacts are mainly used in the places of the Ladder Diagram where fixed contact statuses are required, such as the place where the input of an application instruction is used to select the mode. The sample program shown below gives an example of configuring an Up/Down counter (UDCTR) to an Up counter by using the SHORT contact.

X0	7.UDCTR	
PSU	CV: R 0	CUP
U/D	PV: R 10	
X1		

Up counter using the SHORT contact

- FUN7 is the UDCTR function. While rising edge of CK input occur, FUN7 will count up if the U / D status is 1 or count down if the U/D status is 0 . The example shown above, U/D status is fixed at 1 since U/D is directly connected from the origin-line to a SHORT contact, therefore FUN7 becomes an Up counter. On the contrary, if the U/D input of FUN7 is connected with an OPEN contact from the origin-line, the FUN7 becomes a DOWN counter.

Down counter using the OPEN contact

4-1-3 Output Coil and Inverse Output Coil

Output Coil writes the node status into an operand specified by the coil instruction. Invert Output Coil writes the complement status of node status into an operand specified by the coil instruction. The characteristics depicts at below.

4-1-4 Retentive Output Coil

For the internal coil, it can be set as holding or non-holding (it is a dichotomy, such as M0-M8519 of the internal coil M0-M9119 is non-holding, then M8520-M9119 is holding), but for the output point, due to practical It is not suitable to use the dichotomy method to set hold or non-hold, so if most PLCs need to hold the output point, they must first send the result to the internal hold coil, and then send the internal hold coil to the indirect method of the output point, M SERIES PLC Then provide you with the method of selecting the output point to be maintained under the page of I/O Configuration -> Output Power Failure Hold, the following self-protection circuit:

[^2]From the above example, if turn the XO "ON" then "OFF", YO will keep at "ON". When change the PLC state from RUN to STOP then RUN or turn the power off then on, the YO still keep at ON state. But if use the OUT YO instruction instead of the OUT L YO, need to turn the XO "ON" again after change the PLC state from RUN to STOP then RUN or turn the power off then on, YO status will be ON.

4-1-4 Set Coil and Reset Coil

Set Coil writes 1 into an operand specified. Reset Coil writes 0 into an operand specified. The characteristics depicts at below.

Ladder Diagram of Set Coil and Reset Coil

Set Coil and Reset Coil

Description of Function Instructions

5－1 The Format of Function Instructions． ．． 2
5－2 Use W Prefix for Word and Bit Access Transformation 10
5－3 Use Index Register（XR）for Indirect Addressing 14
5－4 Numbering System 錯㰴！尚未定義書簂。
5－5 Overflow and Underflow of Increment（ +1 ）or Decrement（ -1 ）Instruction（Beginners please skip this section）． 20
5－6 Carry and Borrow in Addition／Subtraction 21

5-1 The Format of Function Instructions

Function Instructions of M Series PLC will be divided into four parts including input control, instruction number/name, operand and function output. The number of input controls, operands, and function outputs of each instruction is different (please refer to the description of each instruction).

The Format of Function Instructions

5-1-1 Input Control

M SERIES PLC has at least one input control for other application commands except for 7 application commands without input control, up to four. Application instructions are based on the combination of input control signals to determine whether to execute the instruction and what kind of operation to perform. On the software package of UperLogic and when the ladder diagram program is printed out, all the input control and function output terminals of the application instruction symbols are marked with English comment abbreviations to indicate what kind of function control or output the terminal is, so as to facilitate memory and Read, as shown in the above figure 2 , the first input is marked "PLS", which means that the counter only counts once when the counting pulse pulse changes from $0 \rightarrow 1$ (rising edge), and the second input is marked "U/D" on the U meter above the slash Count Up, D at the bottom means count Down, if this input is 1 , when the counting pulse PLS comes, the counter value will increase by 1 , otherwise, if it is 0 , it will decrease by 1 , and the third input is marked "CLR", which means clear Clear, that is, when this input is 1 , the count value of the counter will be cleared to 0 . For the input control comments of other application commands, please refer to the description of each command.

Note: No input control command means that the command needs to be directly connected to the bus, and cannot be connected in series with input control components, and has no functional output. The command itself forms a network. There are 6 non-input control commands such as MCE, SKPE, LBL, RTS, FOR, NEXT, etc., please refer to the description of each command in Chapter 6 and 7.

All input controls of the function instructions should be connected by the corresponding elements, otherwise a syntax error will occur. As shown in example 3 below, the function instruction FUN7 has three inputs and three elements before FUN7. X0, X1, and X2 corresponds to the first input PLS, second input U/D and third input CLR.

Function instruction of Input Control

5-1-2 Instruction Number and Derivative Instructions

: Indicates a Double Word (32-bit). The 16-bit word is the basic unit of the registers in M-Series PLC. The data length of R, T and C (except $\mathrm{C} 1024^{\sim} \mathrm{C} 1063$) registers are 16 -bit. If a register with 32 -bit data length is required, then it is necessary to combine two consecutive 16-bit registers together such as R1-R0, R3-R2 etc. and those registers are represented by prefix a D letter before register name such as DR0 represents R1-R0 and DR2 represents R3-R2. If you enter DR0 or DWY16 in the monitor mode of FP-08, then a 32-bit long value (R1-R0 or WY32-WY16) will be displayed.

Note 1: In order to differentiate between 16-bit and 32-bit instructions while using the ladder diagram and mnemonic code, we add the postfix letter D after the "Instruction number" to represent 32-bit instructions and the size of their operand are 32-bit. The instruction FUN 11D has a postfix letter D, therefore the source and destination operands need to prefix a letter D as well, such as the augend $S a: R 0$ is actually $S a=D R 0=R 1-R 0$ and $S b=D R 2=R 3-R 2$. Please also pay special attention to the length of the other operands except source and destination are only one word whether 16-bit or 32bit instructions are used.
Note 2: Reading register status at labber Diagram, we can add the prefix letter W before the "Instruction number" to access the register status of consecutive 16 bits, for example, WXO represent $X 0^{\sim} X 15, W M 32$ represent $M 32^{\sim} M 47$, the accessed bit address must be a multiple of 16 bits. For example, WM16 is a legal address, but WM8 is an illegal address.
P : indicates the pulse mode instruction. The instruction will be executed when the status of input control changes from 0 to1 (rising edge). If a postfix letter P is added to the instruction (FUN 15P), the instruction FUN 15P will only be executed when the status of input control signal changes from 0
to 1 . The execution of the instruction is in level mode if it does not have a P postfix, this means the instruction will be executed for every scan until the status of input control changes from 1 to 0 . In this operation manual, an example of the operation statement of a function instruction is shown below.

- When the operation control "EN"=1 or
instruction) from $0 \rightarrow 1$,

The first one indicates the execution requirement for non-P instruction (level mode) and the second one indicates the execution requirement for \mathbf{P} instruction (pulse mode). The following waveform shows the result (R0) of FUN15 and FUN15P under the same input condition.

FUN15 R0 of FUN15 and FUN15P under the same input condition
D P: Indicates the instruction is a 32-bit instruction operating with pulse mode.
Note: \mathbf{P} instruction is much more time saving than level instruction in program scanning, so user should use \mathbb{P} instruction as much as possible.

5-1-3 Operand

The operand is used for data reference and storage. The data of source (S) operand are only for reference and will not be changed by the execution of the instruction. The destination (D) operand is used to store the result of the operation and its data may be changed after the execution of the instruction. The following table illustrates the names and functions of M-Series PLC function instruction's operands and types of contacts, coils, or registers that can be used as an operand.

- The names and functions of the major operands :

Abbreviation	Name	Description
S	Source	The data of source (S) operand are only for reading and reference and will not be changed with the execution of the instruction. If there are more than one source operands, each operand will be identified by the footnote such as Sa and Sb.
D	Destination	The destination (D) operand is used to store the result of operation. The original data will be changed after operation. Only the coils and registers which are not write prohibited can be the destination operand.
L	Length	Indicates the data size or the length of the table, usually are constants.
N	Number	A constant most often used as numbers and times. If there are more than one constant, each constant will be identified by the footnotes such as $\mathrm{Na}, \mathrm{Nb}, \mathrm{Ns}, \mathrm{Nd}$, etc..
Pr	Point	Used to point to a specific a block of data or a specific data or register in a table. Generally, the Pr value can be varied, therefore cannot be constant or input register.
CV	Current value	Used in T and C instruction to store the current value of T or C
PV	Set value	Used in T and C instructions for reference and comparison
T	Table	A combination of a set of consecutive registers forms a table. The basic operation units are word and double word. If there is more than one table, each table will be identified by footnotes such as $\mathrm{Ta}, \mathrm{Tb}, \mathrm{Ts}$ and Td etc..

Abbreviation	Name	Description
M	Matrix	A combination of a set of consecutive registers forms a matrix. The basic operation unit is bit. If there is more than one matrix, each matrix will be identified by footnotes such as Ma, Mb, Ms and Md etc..

Major operands list

Besides the major operands mentioned above, there are other operands which are used for certain special purposes such as the operand Fr for frequency, ST for stack, QU for Queue etc., please refer to the instruction descriptions for more details.

- The types of the operand and their range: The types of operands for the function instructions are Discrete, Register and Constant.
a. Discrete (Digital) Operand:

There is total five function instructions that reference the discrete operand, namely SET, RST, DIFU, DIFD and TOGG. Those five instructions can only be used for operations of Y $\triangle \Delta \triangle \Delta$ (external output), $M \triangle \triangle \triangle \triangle \triangle$ (internal and special) and $S \triangle \triangle \triangle \triangle$ (step) relays. The table shown below indicates the operands and ranges of the five function instructions.

	Y	M	SM	S
	Yo	M0	M191	S0
	$\begin{gathered} Y 25 \\ 5 \end{gathered}$	$\underset{1}{\mathrm{M} 191}$	M200	S99 9
D	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Discrete operand ranges list
Symbol "O" indicates the D (Destination operand) can use this type of coils as operands. The "*" sign above the "O" shown in SM column indicates that should exclude the write prohibited relays as operands. Please refer to Chapter 2-3 for introduction of the special relays
b. Register Operand:

The major operand for function instructions is register operand. There are two types of register operands: the native registers which already is of Words or Double Words data such as R, T, C. The other is derivative registers (WX, WY, WM, WS) which are formed by discrete bits. The types of registers that can be used as instruction operands and their ranges are all listed in the following table:

Ran	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} W X 0 \\ W \times 10 \\ 08 \end{gathered}$	$\begin{gathered} \text { WYO } \\ \text { WY10 } \\ 08 \end{gathered}$	$\begin{gathered} \text { WMO } \\ \text { WM29 } \\ 584 \end{gathered}$	$\begin{array}{\|c} \text { WS0 } \\ \text { WS30 } \\ 88 \end{array}$	$\begin{gathered} \mathrm{TO} \\ \mathrm{~T} 1023 \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 1279 \end{gathered}$	$\begin{gathered} \text { RO } \\ \text { R3476 } \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{R} 3476 \\ 8 \\ \text { R3489 } \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{R} 3502 \\ 4 \\ \mathrm{~L} \\ \mathrm{R} 3515 \\ 1 \end{gathered}$	$\begin{gathered} \text { R3528 } \\ 0 \\ \text { R4322 } \\ 3 \end{gathered}$	$\begin{gathered} R 4322 \\ 4 \\ R 4731 \\ 9 \end{gathered}$	$\begin{gathered} \text { D0 } \\ \text { D1199 } \\ 9 \end{gathered}$	$\begin{gathered} 16 / 32- \\ \text { bit } \\ +/- \\ \text { numbe } \end{gathered}$ r	$\begin{gathered} V, Z \\ P 0^{\sim} P 9 \end{gathered}$
S	\bigcirc	\bigcirc^{*}	\bigcirc	\bigcirc	\bigcirc									
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc^{*}	\bigcirc^{*}	\bigcirc		\bigcirc
\%														

Register operand ranges list

The "○" symbol in the table indicates can apply this kind of data as operand. The "○*" symbol indicates can apply this kind of data except the write prohibited registers as operand. To learn more about write prohibited registers please refer to page 2.4 for introduction of the special register. When R43224 ~ R47319 are not set to be read only registers, can used as normal registers (read, and write)

Note 1: The registers with a prefix W, such as WX, WY, WM and WS are formed by 16 bits. For example, WXO means the register is formed by XO(bit 0) ~ X15(bit 15). WY144 means the register is formed by Y 144 (bit 0) $\sim \mathrm{Y} 159$ (bit 15). Please note that the discrete number must be the multiple of 16 such as $0,16,32,48 \ldots$.
Note 2: The last register (Word) in a table can not be represented as a 32-bit operand in the function because 2 Words are required for a 32-bit operand. The use of WM, WX, WY must be a multiple of 16, for example: WM16, WM32 are supported; WM8 is not supported.
Note 3: TMR (T0~T1023) and CTR (CO~C1279) are special temporary registers for timers and counters. Although they can also be used as general temporary registers, they will make the system complex and difficult to debug. Therefore, except for T or C commands, other instructions should avoid writing to TMR or CTR.

Note 4: T0 ~T1023 and CO ~ C1023 are 16-bit register. But C1024~C1279 are 32-bit register, therefore can't be used as 16 -bit operands.
Note 5: Apart from being directly appointed by register's number (address) as the foregoing discussions, RXXXXX and DXXXXX register can be combined with pointer register V , Z or PO~P9 to make indirect addressing. Please refer to the example in the next section (Section 5.3) for the description of using pointer register (XR) to make indirect addressing.
c. Constant Operand:

The range of 16 -bit constant is between -32768~32767. The range of 32-bit constant is between $2147483648^{\sim} 2147483647$. The constant for several function instructions can only be a positive constant. The range of 16 -bit and 32 -bit constants are listed in the table shown below.

Classification	Range
16-bit signed number	$-32768 \sim 32767$
16-bit un-signed number	$0 \sim 32767$
32-bit signed number	$-2147483648 \sim 2147483647$

32-bit un-signed number	$0 \sim 2147483647$
$16 / 32$-bit signed number	$-32768 \sim 32767$ or
	$-2147483648 \sim 2147483647$
$16 / 32$-bit un-signed number	$0 \sim 32767$ or
	$0 \sim 2147483647$

Constant category and its range table
In addition, some specific operands have different lengths (such as length L, number of bits...N, etc.) and the range will be directly marked on the field of each operand. Please refer to the description of individual instructions.

5-1-4 Functions Output (FO)

The "Function Output" (FO) is used to indicate the operation result of the function instruction. Like control input, each function outputs shown in the screen of programming software are all attached with a word which comes from the abbreviation of the output functionality. Such as CY derived from CarrY. The maximum number of function outputs is 4 and those are denoted as FO0, FO1, FO2, FO3 respectively. The order is from top to bottom, first FO is FOO, second FO is FO1, last FO is FO3. The FO status must be taken out by FO instruction. The unused FO may be left without connecting to any elements, such as FO1 (CY) shown in Example 4 below.
Example 4:

Function output diagram using FUN11

5-2 Use W Prefix for Word and Bit Access Transformation

The single-point (BIT state) memory of M-Series PLC can use W prefix word for word access, that is to access 16 single points at a time, for example, WXO means one access to X0~X15 On the contrary, you can also use this technique to access any single-point state of the character group data, for example, you can place the character group data in WMO, if you want to read the 6th bit of the character group state, just read M6 directly.

5-3 Numbering System

5-3-1 Binary values and the terms

Binary is the basic number system of digital computers. PLC is composed of digital computers, and naturally uses binary. In order to express and grasp binary values, you first need to understand the following terms:

- Bit: (Bit is abbreviated as B, such as B0, B1...) Bit is the most basic unit of binary value, and its state is either 1 or 0 .
- Nibble: (Nibble is abbreviated as NB, such as NBO, NB1...) It is composed of 4 consecutive bits (such as $\mathrm{B} 3 \sim \mathrm{BO}$) and can be used to represent a decimal number $0^{\sim} 9$ or $0^{\sim} \mathrm{F}$ in hexadecimal.
- Byte: (Byte abbreviated as BY, such as BYO, BY1...) is composed of two consecutive digits (that is, 8 bits, such as $B 7 \sim B O$). It can represent the two-digit value of hexadecimal $00 \sim \mathrm{FF}$.
- Word group: (Word abbreviation W, such as W0, W1...) is composed of two consecutive bits (that is, 16 bits such as $\mathrm{B} 15^{\sim} \mathrm{BO}$) can represent 16 The 4 -digit value in base system is 0000~FFFF.
- Double word group: (Double word abbreviation DW, such as DW0, DW1...) is composed of two consecutive word bytes (that is, 32 bits, such as B31~BO) can represent the 8-digit value of hexadecimal 00000000^{\sim} FFFFFFFFF.

Floating Point Number: It is composed of two consecutive word bytes. The maximum range that can be represented by floating point numbers is $\pm\left(1.8^{*} 10-38 \sim 3.4^{*} 1038\right)$, please refer to Section 5.3.6 for the detailed format description.

5-3-2 M SERIES PLC Digit

The numerical calculation or storage inside the M SERIES PLC all uses binary values (Binary), so the values input from the outside to the PLC must be converted into binary codes before the PLC can process them. Similarly, the numerical results retrieved from the PLC are also binary values so all the numbers of UpperLogic must be converted into binary before they can be input to PLC. However, because binary values are extremely difficult to input and read, UpperLogic provides users with the familiar decimal or hexadecimal to input or display in the man-machine interface (numerical input or display), But in fact, all numerical processing is carried out in binary code. ${ }^{\circ}$
Note: If your numerical input or display is not through UperLogic (for example, use a dip switch or a 7-segment display to input to or get from the PLC through the I/O point), then you have to use the ladder diagram program instructions to process the binary and the conversion between decimals allows you to input in decimals and get output in decimals without using UperLogic. Please refer to the description of FUN20(BIN \rightarrow BCD) and FUN21(BCD \rightarrow BIN).

5-3-3 Value Range

As mentioned above, all M SERIES PLCs use binary internally (the BCD value is only for people's habit, and the binary value is converted into a digital display suitable for people to read). There are three types of values in PLC: 16-bit, 32-bit and floating-point numbers, which can represent the following ranges respectively.

16-bit	$-32768 \sim 32767$
32 -bit	$-2147483648 \sim 2147483647$
Floating Point Number	$\pm\left(1.8^{*} 10^{-38} \sim 3.4^{*} 10^{38}\right)$

5-3-4 Display of Values (Please skip this section for beginners)

The following sections describe the representation and format of 16 -bit and 32 -bit values. For users to have an in-depth understanding of the calculation process and results of numerical values and to meet various complex application requirements.

Whether it is a 16 -bit or 32-bit value, its highest bit MSB (16-bit B15, 32-bit B31) indicates the sign of the value (0 : positive number, 1 : negative number), and the rest Bits ($\mathrm{B} 14 \sim \mathrm{BO}$ or $\mathrm{B} 30^{\sim} \mathrm{BO}$) are really
used to represent the numerical value, hereby take 16 bits as an example to explain as follows: (32 bits are also done in the same way, only the length is doubled).

As in the above example, regardless of 16 -bit or 32-bit, the binary bits start from the lowest bit LSB (BO), $B 0$ represents $1, B 1$ represents $2, B 2$ represents $4, B 3$ represents $8, \ldots$ the rest can be deduced by analogy, and its value is the sum of the values represented by all the bits that are 1.

5-4 Use Index Register (XR) for Indirect Addressing

In the M-Series PLC function instructions, there are some operands that can be combined with pointer register ($\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P} 9$) to make indirect addressing (will be shown in the operand table if it applicable). Registers in the range RXXXXX can be combined with a pointer register to perform indirect addressing useing operand (V, Z), range $R X X X X X$ can be combined with an pointer register to perform indirect addressing useing operand(PO~P9). Other operands such as discrete and constant cannot be used for indirect addressing).
There are twelve pointer registers XR (V, Z, PO~P9). The V register in the M SERIES PLC is R43214, and the Z register is R43216. The actual addressed register by index addressing is just offset the original operand with the content of the index register.

As shown in the above diagram, you only need to change the V value to change the operand address. After combining the index addressing with the M -Series PLC function instructions, a powerful and highly efficient control application can be achieved by using very simple instructions. Using the program shown in the diagram below as an example, you only need to use a block move instruction ($B T_{-} \mathrm{M}$) to achieve a dynamic block data display, such as a parking management system.

5-4-1 Index Register (PO~P9) Introduction

- In indirect addressing application, Rxxxxx register can combine $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ for index addressing; Dxxxxx register can't combine V, Z for index addressing, but P0~P9 are allowed.
- When V, Z index register being combined with the Rxxxxx register, for example, RO with V, Z, the instruction format is ROV (where $V=100$, it means R100) or ROZ(where $Z=500$, it means R500); when $\mathrm{PO} \sim \mathrm{P9}$ index register being combined with the Rxxxxx register, the instruction format is RPn ($n=0^{\sim} 9$) or RPmPn ($m, n=0 \sim 9$), for example RP5 (where P5=100, it means R100) or RPOP1(where P0=100, P1=50, it means150).
- When $\mathrm{PO}^{\sim} \mathrm{P9}$ index register being combined with the Dxxxxx register, the instruction format is DPn ($n=0^{\sim} 9$) or DPmPn ($m, n=0^{\sim 9}$), for example DP3 (where P3=10, it means D10) or DP4P5 (where $P 4=100, P 5=1$, it means D101).
- It can combine both P0~P9 index register, for example P2=20, P3=30, when Rxxxxx or Dxxxxx register combines both index register, RP2P3 will point to R50, DP2P3 will point to D50, it means the summation of both indexes register for indirect addressing.

1. Power up and the initial pulse M9131 will move 100 into the index register P2.
2. When X 23 changes from 01 , FUN103 will perform the table movement, the source starts from R100 (P2=100), the destination starts from R2000, the amount is 4 .
Coping the content of R100~R103 for R2000~R2003 at first execution, coping the content of R104~R107 for R2000~R2003 at second execution...
3. Fun 11 is used to increase the index by 4 words each time, every time X23 is "ON", P2 index register will be increased by 4.

5-4-2 Indirect Addressing Program Example

Ladder Diagram
103.BT_M
ENTs : R100 V Td: R2000 L: 4

Ladder Diagram of FUN103 BT_M

Automated Parkinglot Management System

Program Description

The above example assumes that the automated parking lot management system for residents in a community has a total of 100 resident parking spaces, and each resident has 1 set of basic information, which are resident name, phone number, car plate number, parking number, etc. As shown in the figure above, it occupies 4 consecutive PLC internal temporary registers, occupying a total of 400 temporary registers such as R100~R499. Each household has a card with a different card number, which is used for entrance and exit control and parking lot. $0,4, \cdots . . ., 396$, etc. 100 types, after the PLC senses the card number, it will be stored in the index temporary register " V ", and displayed on the terminal (LCD or CRT) at the administrator's office The data is captured and displayed by R2001~R2003 inside the PLC. For example, in this example, the card of resident 2 is sensed, and its value=4, so the V register=4, and the PLC immediately moves the data of R104~R107 to the display Temporary storage area (R2000~R2003), so the terminal at the administrator can immediately display the information on the terminal when it senses the card of resident 2.

! Warning

1. Although using pointer register for indirect addressing application is powerful and flexible, but changing the V and Z values freely and carelessly may cause great damages with erroneous writing to the normal data areas. The user should take special caution during operation.
2. In the data register range that can be used for indirect addressing application (RXXXXX,DXXXXX), the 12552 registers R34768~R47319 (i.e. IR, OR and SR) are important registers reserved for system or I/O usage. Writing at-will to these registers may cause system or I/O errors and may result in a major disaster. Due to the fact that users may not easily detect or control the flexible register address changes made by the V and Z values, M -Series PLC will automatically check if the destination address is in the R34768~R47319 range. In case it is necessary to write to the registers R34768~R47319, please use the direct addressing.

5-4-3 Representation of Negative Number (Beginners should skip this section)

As prior discussion, when the MSB is 1, the number will be a negative number. The M-Series PLC negative numbers are represented by 2'S Complement, i.e to invert all the bits (B15 ~ B0 or B31 ~ BO) of its equivalent positive number (The so-called 1'S Complement is to change the bits equal 1 to 0 and the bits equal 0 to 1) then add 1 . In the above example, the positive number is 12345 . The calculation of its 2'S Complement (i.e. -12345) is described below:

Example of Negative Number

5-4-4 Representation of Floating Point Number (Beginners should skip this section)

The format of floating point number of FATEK-PLC follows the IEEE-754 standard, which use a double word for storage and can be expressed as follow :
floating point number $=$ sign + Exponent + Mantissa

Sign	Exponent	Mantissa
b_{31}	$\mathrm{~b}_{30} \sim \mathrm{~b}_{23}$	$\mathrm{~b}_{22} \sim \mathrm{~b}_{0}$
1 bit	8 bits	23 bits
Representation of Floating Point Number		

If the sign bit is 0 the number is positive, if the sign bit is 1 the number is negative.
The exponent is denoted as 8 -bit excess 127 . For example, if the value of exponent is 128 , it represents the power of 1 , if the value of exponent is 129 , it represents the power of $2 \ldots$. So on and so forth.If you want to express the negative value of the exponent, then 126 is the power of -1 , and 125 is the power of -2 . . . So on and so forth.

The mantissa is 23 -bit with radix 2 . A normalized mantissa always starts with a bit 1 , followed by the radix point, followed by the rest of the mantissa. The leading bit 1, which is always present in a normalized mantissa, is implicit and is not represented.

$$
N=(-1)^{s} * 2^{(E-127)} *(1 . M) \quad 0<E<255
$$

Example 1

$1=(-1)^{0} * 2^{(01111111)} *(1.000 \cdots \cdots \cdot 0)$
The sign is represented by 0 , the exponent's code in excess 127 is $127=01111111$, and the significant bit is 1 , resulting in the mantissa being all 0 's. The simple precision IEEE 754 representation of 1 , is thus:

$$
\text { Code(} 1 \text {) = }
$$

0	0	1	1	1	1	1	1	1	0	0	0	0	$0 \cdots \cdots \cdots \cdots \cdots$	0	0
s	e	m	m	m	m	m	$m \cdots \cdots$	m							

$$
=3 \mathrm{~F} 800000 \mathrm{H}
$$

Example 2

$0.5=(-1)^{0} * 2^{(01111110)} *(1.000 \cdots \cdot \cdot 0)$
The sign is represented by 0 , the exponent's code in excess 127 is $126-127=01111110$, and the significant bit is 1 , resulting in the mantissa being all O's. The simple precision IEEE 754 representation of 0.5 , is thus:

$$
\text { Code (} 0.5 \text {) = }
$$

0	0	1	1	1	1	1	1	0	0	0	0	0	$0 \cdots \cdots \cdots \cdots \cdots$	0	0
s	e	m	m	m	m	m	$m \cdots \cdots$	m							

$$
=3 F 000000 \mathrm{H}
$$

Example 3

$-500.125=(-1)^{1 *} 2^{(10000111)} *(1.11110100001000000000000)$
The sign is represented by 1 , the exponent's code in excess 127 is $135-127=10000111$, and the significant bit is 1 , resulting in the mantissa is 11110100001000000000000 . The simple precision IEEE 754 representation of -500.125 , is thus:

5-5 Overflow and Underflow of Increment (+1) or Decrement (-1) Instruction (Beginners please skip this section

The maximum positive value that can be represented by 16 -bit and 32 -bit operands are 32767 and 2147483647 , and the maximum negative value are -32768 and -2147483648 , respectively. When increase or decrease an operand (e.g., when Up/Down Count of a counter or the register value is +1 or -1), and the result exceeds the value of the positive limit of the operand, then "Overflow" (OVF) occurs. This will cause the value to cycle to its negative limit (e.g., add 1 to the 16 -bit positive limit 32767 will change it to -32768). If the result is smaller than the negative limit of the operand, then "Underflow" (UDF) occurs. This will cause the value to cycle to its positive limit (e.g., deducting 1 from the negative limit -32768 will change it to 32767) as shown in the table below. The flag output of overflow or underflow exists in the FO of M-Series PLC and can be used in cascaded instructions to obtain over 16-bit or 32-bit operation results.

	16-bit Operand	32-bit Operand
Increase	$O V F=1$-32767 -32768 32767 32766 32765	$O V F=1$-2147483646 -2147483647 -2147483648 2147483647 2147483646
Decrease	$U D F=1 \begin{aligned} & -32767 \\ & -32768 \\ & 32767 \\ & 32766 \\ & 32765 \end{aligned}$	$\begin{gathered} \\ U D F=1 \\ \left\{\begin{array}{l} -2147483647 \\ -2147483648 \\ 2147483647 \\ 2147483646 \\ 2147483645 \end{array}\right. \\ \hline \end{gathered}$

Increment or Decrement in 16-bit and 32-bit Operand

5-6 Carry and Borrow in Addition/Subtraction

Overflow/Underflow takes place when the operation of increment/decrement causes the value of the operand to exceed the positive/negative limit that can be represented in the PLC, consequently a flag of overflow/underflow is introduced. Carry/Borrow flag is different from overflow/underflow. At first, there must be two operands making addition (subtraction) where a sum (difference) and a flag of carry/borrow will be obtained. Since the number of bits of the numbers to be added (subtracted), to add (subtract) and of sum (difference) are the same (either 16-bit or 32-bit), the result of addition (subtraction) may cause the value of sum (difference) to exceed 16-bit or 32-bit. Therefore, it is necessary to use carry/borrow flag to be in coordination with the sum (difference) operand to represent the actual value. The carry flag is set when the addition (subtraction) result exceeds the positive limit (32767 or 2147483647) of the sum (difference) operand. The borrow flag is set when addition (subtraction) result exceeds the negative limit (-32768 or -2147483648) of the sum (difference) operand. Hence, the actual result after addition (subtraction) is equal to the carry/borrow plus the value of the sum (difference) operand. The FO of M-Series PLC addition/subtraction instruction has both carry and borrow flag outputs for obtaining the actual result.

	16 -bit / 32-bit $+(-)$	To Be Added (Subtracted) Operand
1 1-bit	Carry/Borrow	
Addition (Subtraction) Operand		

16-bit and 32-bit Addition/Subtraction
While all M-Series PLC numerical operations use 2'S Complement, the representation of the negative value of the sum (difference) obtained from addition (subtraction) is different from the usual negative number representation. When the operation result is a negative value, 0 can never appear in the MSB of the sum (difference) operand. The carry flag represents the positive value 32768 (2147483648) and the borrow flag represents the negative value -32768 (-2147483648).

※lf carry and borrow processing is not required, it is recommended to use Fun224 fast addition and Fun225 fast subtraction, because compared with Fun11 addition and Fun12 subtraction, no carry/borrow is required

Basic Function Instructions

6-1 $\quad \operatorname{TIMER}(T)$ 3
6-2 COUNTER (C) 8
6-3 SET (S) 13
6-4 RST (R) 16
6-5 MASTER CONTROL (MC) 19
6-6 MASTER CONTROL END (MCE) 22
6-7 SKIP (SKP) 23
6-8 SKIP END (SKPE) 25
6-9 DIFFERENTIAL UP (DIFU) 26
6-10 DIFFERENTIAL DOWN (DIFD) 28
6-11 BIT SHIFT (BSHF) 30
6-12 UP/DOWN COUNTER (UDCTR) 32
6-13 MOVE (MOV) 35
6-14 MOVE INVERSE (MOV/) 37
6-15 TOGGLE SWITCH (TOGG). 39
6-16 FAST ADDITION (+). 40
6-17 FAST SUBTRACTION (-) 43
6-18 ADDITION (+) 40
6-19 SUBTRACTION (-) 43
6-20 MULTIPLICATION (*) 50
6-21 DIVISION(/) 53
6-22 INCREMENT (+1) 57
6-23 DECREMEMT (-1) 59
6-24 COMPARE (CMP) 61
6-25 LOGICAL AND (AND). 64
6-26 LOGICAL (OR) 66
6-27 BNTORCRCONVERSNN 68
6-28 BCD TO BIN CONVERSION 70

6-1 TIMER(T)

T	TIMER	T
Command Description		

TB: Time Base (0.01S, $0.1 \mathrm{~S}, 1 \mathrm{~S}$)

Operand

Tn: Timer Number
PV: Preset value of the timer.

	WX	WY	WM	WS	TM	CT	HR	IR	OR	SR	ROR	DR	K
		W	WMO	WSO	T0	C0	RO	R34	R35	R35	$\begin{aligned} & R 43 \\ & 224 \end{aligned}$	D0	0
		$\left\|\begin{array}{c} W Y 1 \\ 008 \end{array}\right\|$			$\begin{aligned} & \mathrm{T} 1 \\ & 02 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} C 1 \\ 27 \\ 9 \end{gathered}$	$\begin{aligned} & R 34 \\ & 767 \end{aligned}$	$\begin{aligned} & \text { R34 } \\ & 895 \end{aligned}$	$\begin{aligned} & \text { R35 } \\ & 151 \end{aligned}$	$\begin{aligned} & R 43 \\ & 223 \end{aligned}$	$\begin{aligned} & \mathrm{R} 48 \\ & 471 \end{aligned}$	$\begin{aligned} & \text { D11 } \\ & 999 \end{aligned}$	327
Tn					O								
PV	O	O		0	O	0	0	O	O	0	0		

- The total number of timers is 1024 (T0 ~ T1023) with three different time bases, 0.01S, 0.1 S and 1 S . The default number and allocation of timers is shown as below (Can be adjusted according to user's actual requirements by the "Configuration" function):

T0 ~ T255 : 0.001S timer (default as $0.00 \sim 32.767 S$)
T256~T511: 0.01S timer (default as 0.0~327.67S)
T512 ~ T767: 0.1S timer (default as 0 ~ 3276.7S)
T768 ~ T1023: 1S timer (default as 0 ~ 32767S)

- The Timer of M-Series PLC will start to run when subprogram triggers. To stop the Timer operation, you must Disable the Timer, not calling the subprogram, which is not equal to Disable Timer. If there is no Disable Timer, it will continue to count.

T	TIMER	T

- If PV is a register, then Timer's time = Time base x register content. Therefore, you only need to change the register content to change the timer's time. Please refer to Example 2.
- The maximum error of a timer is a time base plus a scan time. In order to reduce the timing error in the application, please use the timer with a smaller time base.

Function

Description

- When the time control "EN" is 1 , the timer will start timing (the current value will accumulate from 0) until "Time Up" (i.e., CV $\geqq P V$), then the Tn contact and TUP (FOO) will change to 1 . As long as the timer control "EN" input is kept as 1, even the CV of Tn has reached or exceeded the PV, the CV of the timer will continue accumulating (with $\mathrm{M} 9158=0$) until it reaches the maximum limit (32767). The Tn contact status and flag will remain as 1 when $C V \geqq P V$, unless the "EN" input is 0 . When "EN" input is 0 , the CV of Tn will be reset to 0 immediately and the Tn contact and "Time Up" flag TUP will also change to 0 (please refer to the diagram (1) below).
- M-Series PLC can set the M9158 to 1 so the CV will not accumulate further after "Time Up"and stops at the PV value. The default value of the M9158 is 0, therefore the status of M9158 can be set before executing any timer instruction inthe program to individually set the timer CV to continue accumulating or stop at the PV after "Time Up" (please refer to the diagram (2) below).

T	TIMER					T
Example 1	Fixed Time Timer					
Ladder diagram						
-11 $\mathrm{XI}^{\text {P1 }}$						

An example of taking "Time-Up" signal directly from FOO.

T	TIMER	T
Example 2	Variable Time Timer	

The preset value (PV) shown in example 1 is a constant which is equal to 1000. This value is fixed and can not be changed once programmed. In many circumstances, the preset time of the timers needs to be varied while PLC running. In order to change the preset time of a timer, can first use a register as the PV operand (R or D...) and then the preset time can be varied by changing the register content. As shown in this example, if set RO to 100, then T becomes a 10 S Timer, and hence if set RO to 200, then T becomes a 20S Timer. So that we can easily change the timer dynamically while the PLC is running.

An example of applying the "time-up" status by using the T512 contact.

| T TIMER | T |
| :--- | :---: | :---: |
| Note: If the preset value of the timer is equal to 0 , then the timer's contact status and become 1
 ("EN" input must be at 1) immediately, after the PLC finishes its first scan because "Time-Up" has
 occurred. (TUP) stays at 1 until "EN" input changes to 0. | |

6-2 COUNTER(C)

COUNTER (16-Bit: C0 ~ C1023, 32-Bit: C1024 ~ C1279)		C
Command Description		
Ladder symbol	Operand Cn : The Counter number PV: Preset value	

	WX	WY	WM	WS	$\begin{array}{\|c} \hline \text { TM } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CT } \\ \hline \end{array}$	HR	IR	OR	SR	ROR	DR	K
Range	WXO	WYO	WMO	WSO	T0	CO	R0	$\begin{aligned} & \text { R34 } \\ & 768 \end{aligned}$	$\begin{aligned} & \mathrm{R} 35 \\ & 024 \end{aligned}$	$\begin{aligned} & \text { R35 } \\ & 280 \end{aligned}$	$\begin{aligned} & \text { R43 } \\ & 224 \end{aligned}$	$\begin{gathered} \mathrm{D} 432 \\ 24 \end{gathered}$	0
	$\begin{gathered} w \times 1 \\ 008 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \text { WY1 } \\ 008 \end{array}$	$\begin{aligned} & \text { WM2 } \\ & 9584 \end{aligned}$	$\begin{aligned} & \text { WS3 } \\ & 088 \end{aligned}$	$\begin{gathered} \mathrm{T} 10 \\ 23 \end{gathered}$	$\begin{gathered} 27 \\ 9 \end{gathered}$	$\begin{aligned} & \text { R34 } \\ & 767 \end{aligned}$	$\begin{aligned} & \text { R34 } \\ & 895 \end{aligned}$	$\begin{aligned} & R 35 \\ & 151 \end{aligned}$	$\begin{aligned} & \text { R43 } \\ & 223 \end{aligned}$	$\begin{aligned} & \text { R47 } \\ & 319 \end{aligned}$	$\begin{gathered} \text { D119 } \\ 99 \end{gathered}$	32767
Cn						\bigcirc							
PV	\bigcirc												

- There is total 1024 16-Bit counters ($C 0^{\sim} \mathrm{C} 1023$). The range of preset value is between 0~32767. C0~C139 are Retentive Counters and the CV value will be retained when the PLC turns on or RUN again after a power failure or a PLC STOP. C140~C1023 are NonRetentive Counters, if a power failure or PLC STOP occurs, the CV value will be reset to 0 when the PLC turns on or RUN again.
- There is total 56 32-Bit counters (C1024~C1079). The range of the preset value is between $0^{\sim} 2147483647$. C1024~C1063 are Retentive Counters and C1063~${ }^{\sim}$ C1279 are Non-Retentive Counters.
- The above 16 -bit and 32-bit counters' retentive/non-retentive number distribution is the original factory setting. If this does not meet your needs, you can use the "Frame Configuration" function to adjust.
- To ensure the proper counting from $\mathrm{CO}^{\sim} \mathrm{C} 1024$, the sustain time of input status of CLK should greater than 1 scan time.
- The max counting frequency with this instruction can only up to 20 Hz , for higher frequency please use the high-speed soft/hardware counter.

C	COUNTER (16-Bit: CO ~ C1023 • 32-Bit: C1024 ~ C1279)	C
Function Description		
When "CLR" is at 1, all of the contact Cn, FOO (CUP), and CV value of the counter CV are cleared to 0 and the counter stops counting. When "CLR" $=0$, the counter is allowed to count, because the counter command is essentially a "P command", so only when the counting pulse "PLS" changes from 0 to 1 , the current value CV of the counter Cn will increase by 1 . Until "Count up" (Count up, that is, CV value \geqq set value), the count up contact Cn and the count up flag CUP (FOO) of the counter will both become 1. If there is still counting pulse input at this time, the current value CV of Cn will exceed the set value and continue to accumulate (when M9159=0), until it reaches the upper limit (32767 or 2147483647), and the Cn contact and the counting flag CUP will As long as CV \geqq PV, it will always be 1 , unless the clear control CLR input becomes 1. (Please refer the diagram (1) below) - M-Series PLC can set the M9159 to 1 so the CV will not accumulate further after "Count Up"and stops at the PV. M9159 default value is 0 , therefore the status of M9159 can be set before executing any counter instruction in the program to individually set the counter CV to continue accumulating or stops at the PV after "Count Up" (please refer to the diagram (2) below).		

Note: If the preset value of the counter is 0 and "CLR" input also at 0 , then the Cn contact status and FOO (CUP) becomes 1 immediately after the PLC finishes its first scan because the "Count-Up" has occurred. It will stay at 1 regardless how the CV value varies until "CLR" input changes to 1 .

6-3 SET(S)

6-4 RST(R)

RST DP	RESET (Reset the coil or the register to 0)											RST DP	
Command Description													
Reset control-EN -Ladder symbol RST DP					Operand D: Destination to be reset (The number of a coil or a register)								
Rang Y	M	SM	S	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR
	$\begin{gathered} \text { M0 } \\ \text { M91 } \\ 19 \end{gathered}$	$\begin{gathered} \hline \text { M91 } \\ 20 \\ \text { M29 } \\ 599 \end{gathered}$	$\begin{gathered} \mathrm{S} 0 \\ \mathrm{~s} 310 \\ 3 \end{gathered}$	$\begin{aligned} & \text { WYO } \\ & \text { WY1 } \\ & 023 \end{aligned}$		$\begin{array}{\|l\|l} \text { WSO } \\ \text { WS3 } \\ 104 \end{array}$	$\begin{gathered} \mathrm{TO} \\ \mathrm{~T} 102 \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 128 \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \text { RO } \\ \text { R347 } \\ 67 \end{array}$	$\begin{gathered} \mathrm{R} 350 \\ 24 \\ \text { R351 } \\ 51 \end{gathered}$	$\begin{array}{r} R 352 \\ 80 \\ R 402 \end{array}$	$\begin{gathered} \mathrm{R} 402 \\ 80 \\ \mathrm{R} 484 \end{gathered}$	D0D119 D19
D \bigcirc	\bigcirc	O*	\bigcirc	O*	O*	\bigcirc							
Description													
- When the reset control "EN" $=1$ or from $0 \rightarrow 1$ (P instruction), resets the coil or register to 0 .													
Example 1	Single Coil Reset												
Please refer to example 1 for the SET instruction													
Example 2	16-Bit Register Reset												

Note:
If you use a single contact reset ($\mathrm{Y}, \mathrm{M}, \mathrm{S}$), it is recommended to use "coil reset", the efficiency of using the PLC will be better than set instruction
The example is as follows:

6-5 MASTER CONTROL(MC)

FUN 0 MC	MASTER CONTROL LOOP START		FUN 0 MC
Command Description			
Operand N: Master Control Loop number ($\mathrm{N}=0 \sim 127$) the number N cannot be used repeatedly.			
Description			

- M There are a total of 128 MC loops ($\mathrm{N}=\mathrm{O}^{\sim} 127$). Every Master Control Start instruction, MC N, must correspond to a Master Control End instruction, MCE N, which has the same loop number as MC N. They must always be used in pairs and you should also make sure that the MCE N instruction is after the MC N instruction.
- When the Master Control input "EN/" is 1, then this MCN instruction will not be executed, as it does not exist.
- When the Master Control input "EN/" is 0 , the master control loop is active, the area between the MC N and MCE N is called the Master Control active loop area. All the status of OUT coils or Timers within Master Control active loop area will be cleared to 0 . Other instructions will not be executed.

Chapter 6 Basic Function Instructions

MASTER CONTROL LOOP START	
Note 1: MC/MCE instructions can be used in nesting or interleaving as shown to the right:	

6-6 MASTER CONTROL END(MCE)

6-7 SKIP(SKP)

 to a skip end instruction, SKPE N, which has the same loop number as SKP N. They must always be used as a pair and you should also make sure that the SKPE N instruction is after the SKP N instruction.

- When the skip control "EN" is 0, then the Skip Start instruction will not be executed (An equivalent SKP N command does not exist).
- When the skip control "EN" is 1 , the range between the SKP N and SKPE N which is so called the Skip active loop area will be skipped, that is all the instructions in this area will not be executed. Therefore, the statuses of the discrete or registers in this Skip active loop area will be retained.

Chapter 6 Basic Function Instructions

6-8 SKIP END(SKPE)

- Every SKPE N must correspond to a SKP N instruction. They must always be used as a pair and you should also make sure that the SKPE N instruction is behind the SKP N instruction.
- SKPE instruction does not require an input control because the instruction itself forms a network which other instructions can not connect to it. If the SKP N instruction has been executed then the skip operation will be completed when the execution of the program reaches the SKPE N instruction. If SKP N instruction has never been executed then the SKPE instruction will do nothing.

Example 1

Please refer to the example and explanations for SKP N instruction.
Note: SKP/SKPE instructions can be used by nesting or interleaving. The coding rules are the same as for the MC/MCE instructions. Please refer to the section of MC/MCE instructions.

6-9 DIFFERENTIAL UP (DIFU)

FUN $4 P$ DIFU	DIFFERENTIAL UP						FUN 4 P DIFU
Command Description							
Ladder symbol				Operand D: The specific coil number where the result of the Differential Up operation is stored.			
		Range Ope rand D	Y $Y 0$ Y1023 O	M $M 0$ M1958 3 O	SM M9120 M2959 O *	$\begin{gathered} \text { S } \\ \text { S0 } \\ \text { S3104 } \\ \hline 0 \end{gathered}$	
Description							

- The DIFU instruction is used to output the up differentiation of a node status (status input to "TGU") and the pulse signal resulting from the status change at the rising edge of the "TGU" for one scan time is stored to a coil specified by D.
- The functionality of this instruction can also be achieved by using a TU contact. 。

6-10 DIFFERENTIAL DOWN(DIFD)

- The DIFD instruction is used to output the down differentiation of a node status (status input to "TGD") and the pulse signal resulting from the status change at the falling edge of the "TGD" for one scan time is stored to a coil specified by D.
- The functionality of this instruction can also be achieved by using a TD contact.

Example	The results of the following two samples are exactly the same		
		Ladder Diagram	
		Example 1	
		Example 2 X1 Yo	

6-11 BIT SHIFT(BSHF)

- When the status of clear control "CLR" is at 1 , then the data of register D and FOO will all be cleared to 0 . All other input signals are invalid.
- When the status of clear control is "CLR" at 0 , then the shift operation is permissible. When the shift control "EN" = 1 or from $0 \rightarrow 1$ (P Instruction), the data of the register will be shifted to right $(L / R=0)$ or to left ($L / R=1$) by one bit. The shifted-out bit (MSB when shift to left and LSB when shift to right) for both cases will be sent to FOO. The vacated bit space (LSB when shift to left and MSB when shift to right) due to shift operation will be filled in by the input status of fill-in bit "INB".

FUN 6 DP BSHF	BIT SHIFT (Shifts the data of the 16 -bit or 32 -bit register to left or to right by one bit)	FUN 6 D P BSHF
Example	Shifts the 16-bit register data	
Ladder diagram		
\|res.		
$x 3=1$ (Left shift)		
$X 3=0$ (Right shift)		

6-12 UP/DOWN COUNTER(UDCTR)

FUN 7 UDCT		UP/DOWN COUNTER (16-bit or 32-bit up and down 2-phase Counter)										$\begin{aligned} & \text { FUN } \\ & \text { UD } \end{aligned}$	7D P
Command Description													
RangeOpe-rand	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
	$\begin{gathered} w \times 0 \\ w \times 1 \\ 008 \end{gathered}$	$\begin{gathered} \text { WYO } \\ \text { WY10 } \\ 08 \end{gathered}$	$\begin{aligned} & \text { WMO } \\ & \text { WM2 } \\ & 9584 \end{aligned}$	$\begin{gathered} \text { Wso } \\ \text { Ws30 } \\ 88 \end{gathered}$	T0	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 1279 \end{gathered}$	$\underset{7}{\mathrm{RO}} \underset{7}{\mathrm{R} 346}$	$\begin{gathered} \text { R3476 } \\ 8 \\ \text { R3489 } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { R3502 } \\ 4 \\ \text { R3515 } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { R3528 } \\ 0 \\ \text { R4322 } \\ 3 \end{gathered}$	$\begin{gathered} R 4322 \\ 4 \\ R 4731 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \text { DO } \\ \text { D119 } \\ \hline 99 \end{gathered}$	$\begin{gathered} 16 / 32 \\ - \text { bit } \\ +/- \\ \text { numb } \\ \text { er } \end{gathered}$
CV	O	O	θ	θ	θ	θ	θ	0	V	O^{*}	O^{*}	θ	0
Description													

- When the clear control "CLR" is 1 , the counter's CV will be reset to 0 and the counter will not be able to count.
- When the clear control "CLR" is 0 , counting will then be allowed. The nature of the instruction is a P instruction. Therefore, when the count-pulse "PLS" is from $0 \rightarrow 1$ (rising edge), the CV will be increased by 1 (if $U / D=1$) or decreased by 1 (if $U / D=0$).
- When $\mathrm{CV}=\mathrm{PV}$, FOO ("Count-Up) will change to 1 ". If there are more clocks input, the counter will continue counting which cause $\mathrm{CV} \neq \mathrm{PV}$. Then, FO will immediately change to 0 . This means the "Count-Up" signal will only be equal to $1 \mathrm{if} \mathrm{CV}=\mathrm{PV}$, or else it will be equal to 0 (Care should be taken to this difference from the "Count-Up" signal of the general counter).
- The upper limit of up count value is 32767 (16-bit) or 2147483647 (32-bit). After the upper limit is reached, if another up-count clock is received, the counting value will become -32768 or -2147483648 (the lower limit of down count).
- The lower limit of down count value is -32767 (16-bit) or -2147483647 (32-bit). After the lower limit is reached, if another down count clock is received, the counting value will become 32768 or 2147483648 (the upper limit of up count).
- If U / D is fixed as 1 , the instruction will become a single-phase up count counter. If U / D is fixed as 0 , the instruction will become a single-phase down count counter.

6-13 MOVE(MOV)

FUN 8 MO	D	MOVE(Moves data from S to D)											$\begin{array}{r} \text { FUN } \\ \mathrm{M} \end{array}$	$\begin{aligned} & 18 \mathrm{DP} \\ & \text { 10V } \end{aligned}$
Command Description														
Ladder symbol$\text { Move control - EN }-\left[\begin{array}{l} \text { 8DP.MOV } \\ \mathrm{S}: \\ \mathrm{D}: \end{array}\right.$							Operand S: Source register number D: Destination register number The S, D may combine with V, Z, PO~P9 to serve indirect addressing							
RangOpe-ra$n$$d$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{aligned} & \text { wxo } \\ & \text { wx1 } \\ & 008 \end{aligned}$	$\begin{aligned} & \text { WYO } \\ & \text { WY1 } \\ & 008 \end{aligned}$	$\begin{aligned} & \text { WMO } \\ & \text { WM2 } \\ & 9584 \end{aligned}$	$\begin{aligned} & \text { WSO } \\ & \text { WS3 } \\ & 008 \end{aligned}$	$\begin{array}{\|c\|} \text { T0 } \\ \text { T102 } \\ \hline \end{array}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 127 \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \text { RO } \\ \text { R347 } \\ 67 \end{array}$	$\begin{gathered} \text { R347 } \\ 68 \\ \text { R348 } \\ 95 \end{gathered}$	$\begin{gathered} \text { R350 } \\ 24 \\ \text { R351 } \\ 51 \end{gathered}$	$\begin{gathered} \text { R352 } \\ 80 \\ \text { R432 } \\ 23 \end{gathered}$	$\begin{gathered} R 432 \\ 24 \\ R 473 \\ 19 \end{gathered}$	$\begin{array}{\|c\|} \text { DO } \\ \text { D119 } \\ 99 \end{array}$	$16 / 3$ $2-b i t$ $+/-$ num ber	V , Z PO-P9
$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc							
		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	O*	\bigcirc		\bigcirc
Description														
- Move (write) the data of S to a specified register D when the move control input "EN" $=1$ or from 0 to 1 (P Instruction).														

RO	10

6-14 MOVE INVERSE(MOV/)

FUN 9 DP MOV/	MOVE INVERSE (Inverts the data of S and moves the result to a specified device D)		FUN 9 DP MOV/
Command Description			
$\begin{array}{r} \underline{\text { Ladder symbol }} \\ \text { Move control - EN }\left[\begin{array}{l} \text { 9DP.MOV/ } \\ \text { S: } \\ \text { D: } \end{array}\right] \end{array}$		Operand S: Source register number D: Destination register number S, D may combine with V, Z, PO~P indirect addressing	o serve

$\sum_{\substack{\text { ope. } \\ \text { Rand }}}^{\text {Range }}$	WX	WY	WM	WS	T	C	HR	IR	OR	SR	ROR	DR	K	XR
	wxo	$\begin{gathered} \substack{\text { wro } \\ \text { wr100 }} \end{gathered}$	$\begin{gathered} \text { wno } \\ \text { wro9s44 } \end{gathered}$	wso		$\begin{gathered} c \\ c \\ c \\ c \end{gathered}$	$\begin{gathered} \text { R00 } \\ \text { R34767 } \end{gathered}$	R34768 R3495 R3	R35024 । !	${ }^{\text {Ras580 }}$	RA3224 Ral319	$\begin{gathered} \text { 00 } \\ \text { o119999 } \end{gathered}$	${ }^{16632-b i t}$	pop9
S	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc

Description

- Inverts the data of S (changes the status from 0 to 1 and from 1 to 0) and moves the results to a specified register D when the move control input "EN" =1 or from 0 to1 (\mathbf{P} Instruction).

FUN 9—P MOV/	MOVE INVERSE (Inverts the data of S and moves the result to a specified device D)											FUN 9DP MOV/
Example	Moves the inverted data of a 16-bit register to another 16-bit register.											
Ladder Diagram												
B15	B15											B0
	Y31$\bumpeq \mathrm{XO}=1$Y16											

6-15 TOGGLE SWITCH(TOGG)

6-16 FAST ADDITION F (+)

$\begin{aligned} & \text { FUN224D『 } \\ & \text { F }(+) \end{aligned}$		Fast ADDITION (Performs addition of the data specified at Sa and Sb and stores the result in D)											$\begin{aligned} & \text { FUN224DP } \\ & \text { F }(+) \end{aligned}$	
Command Description		Support after UperLogic: v_0.8.517 visions												
							Operand Augend Addend Destination register to store the results he addition Sb, D may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to serve rect addressing							
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxxioo } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wwios } \end{gathered}$	$\underset{\substack{\text { wmo } \\ \text { wrussa }}}{ }$	$\begin{gathered} \text { Wso } \\ \text { \| } \\ \text { Ws3088 } \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { Tio2 } \end{aligned}$	$\begin{gathered} c o \\ c \\ c \end{gathered}$	$\begin{gathered} \text { Ro } \\ \text { Ra3767 } \end{gathered}$	R33788 R3ass R.	R35024 \| R35151	R 3 R280 Ra323 R.	$\begin{aligned} & \text { Ras3222 } \\ & \hline 89139 \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { pirs999 } \end{gathered}$	16/32-bit +/-number	$\begin{aligned} & \mathrm{v}, \mathrm{z} \\ & \text { popg } \end{aligned}$
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc

$\left.\begin{array}{|c|c|c|}\hline \text { FUN224 DP } & \begin{array}{c}\text { Fast ADDITION } \\ F(+)\end{array} & \begin{array}{c}\text { (Performs addition of the data specified at Sa and Sb and stores the } \\ \text { result in } D)\end{array}\end{array} \begin{array}{c}\text { FUN224 DP } \\ F(+)\end{array}\right]$

- Performs the fast addition control "EN" $=1$ or from $0 \rightarrow 1$ (P command) and the command is set to signed (S command), add Sa and Sb with the positive and negative number (Sign) algorithm and write the result into D.
- Performs the fast addition control "EN" $=1$ or from $0 \rightarrow 1$ (P command) and the command is set to unsigned (U command), use the positive integer (Unsigned) algorithm to add Sa and Sb and write the result in D .
- Compared with the addition operation of FUN11, the fast addition operation eliminates the overflow and underflow operations and flags, so the program execution time will be faster than the addition operation of FUN11, and the operation result will be the same as the general operation. The result after the computer calculation is the same as the result on the left side of the figure below,
In addition, the calculation result of the addition operation of FUN11 will be different at the numerical boundary.

R10	HEX	7FFFH	Augend				
R11	HEX	0001 H	Addend				
R12	HEX	8000 H	fast addition operation resualt	R15	HEX	0000 H	addition operation resualt
R10	DEC	32767	Augend				
R11	DEC	1	Addend				addition operation resualt
R12	DEC	-32768	fast addition operation resualt	R15	DEC	0	0

$\begin{aligned} & \text { FUN224 DP } \\ & \text { F (+) } \end{aligned}$	Fast ADDITION (Performs addition of the data specified at Sa and Sb and stores the result in D)				$\begin{aligned} & \text { FUN224 DP } \\ & \text { F (}+ \text { P } \end{aligned}$
Example					
Ladder Diagram					
Sa \square $R 0+R 1=32770(32767+3)$ $\sqrt{ } \mathrm{XO}=$ D \square $32767+3 \gg-32768+2 \gg$ -32766 ※ When adding more than 32767 (0x7FFF), it will become $-32768(0 \times 8000), ~-32767(0 \times 8001), ~-32766(0 \times 8002)$-... -1(0xFFFF) , 0(0x0000)					

6-17 FAST SUBTRACTION F (-)

$\begin{gathered} \text { FUN225 D P } \\ \text { F (}- \text {) } \end{gathered}$		Fast SUBTRACTION (Performs subtraction of the data specified at Sa and Sb and stores the result in D)											$\begin{gathered} \text { FUN } 2 \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & 25 \text { D P } \\ & -) \end{aligned}$
Command Description		Support after UperLogic: v_0.8.517 visions												
Addition Control-EN-[$\left.\begin{array}{l}\text { Ladder symbol } \\ \text { 225DPU/DPS.F(-) } \\ \text { Sa: } \\ \text { Sb: } \\ \text { D: } \\ \hline\end{array}\right] \quad$ Sa: minuend Sb: Subtrahend D: Destination register to store the results of the subtraction Sa, Sb, D may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{Pg}$ to serve indirect addressing														
$\sum_{\substack{\text { opee } \\ \text { Rend } \\ \text { Range }}}^{\substack{\text { Rose } \\ \hline}}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{array}{\|c} \hline \text { wxo } \\ \text { wxxoos } \end{array}$	$\begin{gathered} \text { wro } \\ \text { wrios } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c} \hline \text { wnmossa } \\ \text { wras } \end{array}$	$\begin{gathered} \text { wso } \\ \text { wsioge } \end{gathered}$	$\begin{gathered} \text { T0 } \\ \text { \| } \\ \text { T1023 } \end{gathered}$	co	$\begin{gathered} \text { Ro } \\ \text { R33 } \end{gathered}$		$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \\ \hline \end{gathered}$	${ }_{\substack{\text { R3530 } \\ \text { Ra323 }}}^{\text {Ren }}$	$\begin{aligned} & \text { Ras32424 } \\ & \text { R27319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { 0119999 } \end{gathered}$		XR pope
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	○*	\bigcirc		\bigcirc
Description														

－When the subtraction control＂EN＂$=1$ or from $0 \rightarrow 1$（P command）and the command is set to signed（S command），subtract Sa and Sb with the positive and negative number（Sign） algorithm and write the result into D ．
－When the subtraction control＂EN＂$=1$ or from $0 \rightarrow 1$（P command）and the command is set to unsigned（U command），subtract Sa and Sb with a positive integer（Unsigned）algorithm and write the result in D ．
－Compared with the subtraction operation of FUN12，the fast subtraction operation eliminates overflow and underflow operations and flags，so the program execution time is faster than the subtraction operation of FUN12，and the operation result will be the same as the general operation．The result calculated by the computer is the same as the result on the left side of the figure on the next page，and it will also be different from the calculation result of the subtraction operation of FUN12 at the numerical boundary．

$\begin{gathered} \text { FUN225 D P } \\ \text { F (- } \end{gathered}$	Fast SUBTRACTION （Performs subtraction of the data specified at Sa and Sb and stores the result in D）						$\begin{gathered} \text { FUN225 D P } \\ \text { F }(-) \end{gathered}$
十六進制	8000H	被隇數					
十六進制	0001H	澸數					
十六進制	7FFFH	快速减法運算結果	R5	十六進制	FFFFH		法運算結果
＋進制	－32768	被滅數					
＋進制	1	澸數					
＋進制	32767	块速减法運算結果	R5	＋進制	－1		法運算結果
Example							

SaSb	RO	-5	$\begin{aligned} & R 0-R 1= \\ & -32772(-32768-4) \end{aligned}$
	R1	32767	
	』 $\mathrm{XO} 0=1$		
D	R2	32764	$\begin{aligned} & -32772 \gg-32768-4 \gg 32767-3 \\ & \gg 32764 \end{aligned}$
※ when less than $-32768(0 \times 8000)$ will becomes to 32767(0x7FFF) , 32766(0x7FFE)....0(0x000)			

6-18 ADDITION (+)

$\begin{gathered} \text { FUN11 } \\ (+ \end{gathered}$		ADDITION (Performs addition of the data specified at Sa and Sb and stores the result in D)												$\begin{aligned} & 11 \text { DP } \\ & +\quad \text { (} \end{aligned}$
Command Description														
Operand Sa: Augend Sb: Addend D: Destination register to store the results of the addition $\mathrm{Sa}, \mathrm{Sb}, \mathrm{D}$ may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{P} 0^{\sim} \mathrm{P9}$ to serve indirect addressing														
$\sum_{\substack{\text { opee. } \\ \text { Range }}}^{\text {Rand }}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxilos } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrios } \end{gathered}$	$\begin{array}{\|c\|c\|c\|} \hline \text { Wmo } \\ \text { wrossa4 } \end{array}$	$\begin{gathered} \substack{\text { wso } \\ \text { wsios }} \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c 0 \\ \text { ci29 } \end{gathered}$	$\begin{gathered} \text { Rop } \\ \text { R39767 } \end{gathered}$		${ }_{\substack{\text { R3524 } \\ \text { R3515 }}}^{\text {Rer }}$	$\begin{aligned} & \text { R} 53280 \\ & \text { Ras32 } \end{aligned}$	$\begin{aligned} & \text { Ras32424 } \\ & \text { Realic } \end{aligned}$	Do Di1999		V,2
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
Description														

- Performs the addition of the data specified at Sa and Sb using signed number and writes the results to a specified register D when the add control input "EN" $=1$ or from 0 to 1 (instruction) and " U / S " $=0$. If the result of addition is equal to 0 then set $\mathrm{FOO}(\mathrm{D}=0)$ to 1 . If carry occurs (the result exceeds 32767 or 2147483647) then set FO1(CY) to 1. If borrow occurs (adding negative numbers resulting in a sum less than -32768 or -2147483648), then set the $\mathrm{FO} 2(\mathrm{BR})$ to 1 . All the FO statuses are retained until this instruction is executed again and overwritten by a new result.
- Performs the addition of the data specified at Sa and Sb using unsigned number and writes the results to a specified register D when the add control input "EN" $=1$ or from 0 to 1 (\mathbf{P} instruction) and " U / S " $=1$. If the result of addition is equal to 0 then set $\mathrm{FOO}(\mathrm{D}=0)$ to 1 . If carry occurs (the result exceeds 65535 or 4294967295) then set FO1(CY) to 1

FUN11DP $(+)$	ADDITION (Performs addition of the data specified at Sa and Sb and stores the result in D)	FUN11 $\mathbf{D P}$ $(+)$
Example		

$$
\checkmark \times 0=\lrcorner
$$

D | R2 | 2 |
| :---: | :---: |
| $\mathrm{YO}=1$ (carry 1 represents +32768) | |

6-19 SUBTRACTION (-)

$\begin{gathered} \text { FUN12 D P } \\ (-) \end{gathered}$		SUBTRACTION (Performs subtraction of the data specified at Sa and Sb and stores the result in D)											FUN	$12 \text { D P }$
Symbol														
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxxios } \end{gathered}$	$\begin{gathered} \text { who } \\ \text { wryoos } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wrossas } \end{gathered}$	$\begin{gathered} \substack{\text { wso } \\ \text { wssen }} \end{gathered}$	$\begin{gathered} \text { 70 } \\ \text { rio } \end{gathered}$	$\begin{gathered} c_{0} 0 \\ \text { c1279 } \end{gathered}$	$\begin{array}{\|c} \substack{\text { R } \\ \text { R34767 }} \end{array}$	R34768 \| R34895	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \text { \| } \\ \text { R43223 } \end{gathered}$	$\begin{gathered} \text { R43224 } \\ \text { R47319 } \end{gathered}$	$\begin{gathered} \text { Do } \\ \text { ping999 } \end{gathered}$	$\begin{aligned} & \text { 16/82.bibl } \\ & +/ \text { rumber } \end{aligned}$	$\begin{aligned} & \mathrm{v}, \mathrm{z} \\ & \text { popg } \end{aligned}$
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	○*	\bigcirc		\bigcirc
Description														

- Performs the subtraction of the data specified at Sa and Sb using signed number and writes the results to a specified register \mathbf{D} when the subtract control input "EN" =1 or from 0 to 1 (\mathbf{P} instruction) and " $\mathrm{U} / \mathrm{S}^{\prime \prime}=0$ ". If the result of subtraction is equal to 0 then set $\mathrm{FOO}(\mathrm{D}=0)$ to 1 . If carry occurs (subtracting a negative number from a positive number and the result exceeds +32767 or +2147483647), then set FO1(CY) to 1 . If borrow occurs (subtracting a positive number from a negative number and the resulted difference is less than -32768 or 2147483648), then set FO2(BR) to 1 . All the FO statuses are retained until this instruction is executed again and overwritten by a new result.

6-20 MULTIPLICATION (*)

- Performs the multiplication of the data specified at Sa and Sb using the signed number and writes the results to a specified register D when the multiplication control input "EN" $=1$ or from 0 to 1 (P instruction) and " U / S " $=0$. If the product of multiplication is equal to 0 then set $\mathrm{FOO}(\mathrm{D}=0)$ to 1 . If the product is a negative number, then set $\mathrm{FO}(\mathrm{D}<0)$ to 1 .
- Performs the multiplication of the data specified at Sa and Sb using the unsigned number and writes the results to a specified register D when the multiplication control input "EN" $=1$ or from 0 to 1 (P instruction) and " U / S " $=1$. If the product of multiplication is equal to 0 then set FOO(D=0) to 1 .

6-21 DIVISION (/)

- Performs the division of the data specified at Sa and Sb using the signed number and writes the results to a specified register D when the multiplication control input "EN" =1 or from 0 to 1 (\mathbb{P} instruction) and $" \mathrm{U} / \mathrm{S}$ " $=0$. If the quotient of division is equal to 0 then set FOO to 1. If the divisor $\mathrm{Sb}=0$ then set the error flag FO to 1 without executing the instruction.
- Performs the division of the data specified at Sa and Sb using the unsigned number and writes the results to a specified register D when the multiplication control input "EN" =1 or from 0 to 1 (\mathbf{P} instruction) and $" U / S "=1$. If the quotient of division is equal to 0 then set FOO to 1 . If the divisor $\mathrm{Sb}=0$ then set the error flag FO1 to 1 without executing the instruction.

FUN14 D P (/)	DIVISION (Performs division of the data specified at Sa and Sb and stores the result in D)	$\begin{gathered} \text { FUN14 D P } \\ (/ /) \end{gathered}$
Example 1	16-bit division	

Ladder Diagram							
$\begin{gathered} \text { FUN14 D } P \text { } \\ (/) \end{gathered}$	DIVISION (Performs division of the data specified at Sa and Sb and stores the result in D)						FUN14 D P (/)

6-22 INCREMENT (+ 1)

- Adds 1 to the register \mathbf{D} when the increment control input "EN" $=1$ or from 0 to 1 (\mathbf{P} instruction). If the value of D is already at the upper limit of positive number 32767 or 2147483647 , adding one to this value will change it to the lower limit of negative number 32768 or -2147483648 . At the same time, the overflow flag FOO (OVF) is set to 1.
- Please refer to Section 5.4 for details on overflow.

Chapter 6 Basic Function Instructions

6-23 DECREMEMT (- 1)

- Subtracts 1 from the register D when the decrement control input "EN" $=1$ or from 0 to 1 (P instruction). If the value of D is already at the lower limit of negative number - 32768 or 2147483648, subtracting one from this value will change it to the upper limit of positive number 32767 or 2147483647 . At the same time, the underflow flag FOO (UDF) is set to 1.
- Please refer to section 5.4 for detailed description of missing bits.

6-24 COMPARE(CMP)

- Compares the data of Sa and Sb using signed number when the compare control input "EN" $=1$ or from 0 to 1 (P instruction) and $\mathrm{U} \mathrm{U} / \mathrm{S}$ " $=0$. If the data of Sa is equal to Sb , then set FO to 1 . If the data of $\mathrm{Sa}>\mathrm{Sb}$, then set FO1 to 1 . If the data of $\mathrm{Sa}<\mathrm{Sb}$, then set FO2 to 1 . If the data of $\mathrm{Sa}<\mathrm{Sb}$, then set the FO2 to 1 .
- Compares the data of Sa and Sb using unsigned number when the compare control input "EN" =1 or from 0 to 1 (P instruction) and U / S " $=1$. If the data of Sa is equal to Sb , then set FOO to 1. If the data of $\mathrm{Sa}>\mathrm{Sb}$, then set FO1 to 1 . If the data of $\mathrm{Sa}<\mathrm{Sb}$, then set FO2 to 1 . If the data of $\mathrm{Sa}<\mathrm{Sb}$, then set the FO2 to 1 .

FUN17 DP CMP	COMPARE (Compares the data of Sa and Sb and outputs the results to function Outputs)	FUN17 DP CMP
Example	Compares the data of 16-bit register	

- From the above example, we first assume the data of R0 is 1 and $R 1$ is 2 , and then compare the data by executing the CMP instruction. The FOO and FO1 are set to 0 and FO2 $(a<b)$ is set to 1 since $a<b$.
- If you want to have the compound results, such as \geqq, \leqq - < > etc., please send = ' < and > results to relay first and then combine the result from the relays.

6-25 LOGICAL AND(AND)

FUN18 D P AND	LOGICAL AND												FUN18 \mathbf{D} AND
Command Description													
	WX	WY	WM	WS	$\begin{gathered} \text { TM } \\ \mathrm{R} \end{gathered}$	CTR	HR	IR	OR	SR	ROR	DR	K
	$\begin{gathered} w \times 0 \\ w \times 1 \\ 008 \end{gathered}$	$\begin{aligned} & \text { WYO } \\ & \text { WY1 } \\ & 008 \end{aligned}$	$\begin{aligned} & \text { WMO } \\ & \text { WM2 } \\ & 9584 \end{aligned}$	$\begin{aligned} & \text { WSO } \\ & \text { WS3 } \\ & 088 \end{aligned}$	$\begin{gathered} \text { T0 } \\ \text { T10 } \\ 23 \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 127 \\ 9 \end{gathered}$	$\begin{array}{\|c} \mathrm{RO} \\ \text { R347 } \\ 67 \end{array}$	$\begin{gathered} \text { R347 } \\ 68 \\ \text { R348 } \\ 95 \end{gathered}$	$\left\|\begin{array}{c} \text { R350 } \\ 24 \\ \text { R351 } \\ 51 \end{array}\right\|$	$\begin{gathered} \mathrm{R} 352 \\ 80 \\ \mathrm{R} 432 \\ 23 \end{gathered}$	$\begin{gathered} \mathrm{R} 432 \\ 24 \\ \text { R473 } \\ 19 \end{gathered}$	$\begin{gathered} \text { D0 } \\ \text { D11 } \\ 999 \end{gathered}$	$\begin{gathered} 16 / 32 \\ \mathrm{bit} \\ +/- \\ \text { numbe } \\ r \end{gathered}$
Sa	\bigcirc												
Sb	\bigcirc												
D		\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc		\bigcirc	O*	O*	\bigcirc	
Description													

- Performs logical AND operation for the data of Sa and Sb when the operation control input "EN" =1 or from 0 to 1 (\mathbf{P} instruction). This operation compares the corresponding bits of Sa and Sb ($\mathrm{B} 0^{\sim} \mathrm{B} 15$ or $\mathrm{B} 0^{\sim} \mathrm{B} 31$). The bit in the D is set to 1 if both of the corresponding bit data of Sa and Sb is 1 . The bit in the D is set to 0 if one of the corresponding bits is 0.

6-26 LOGICAL(OR)

FUN19 D P OR	LOGICAL OR	
Command Description		

Renege	wx	wr	WM	Ws	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
$\substack { \text { One } \\ \begin{subarray}{c}{\text { Onad }{ \text { One } \\ \begin{subarray} { c } { \text { Onad } } } \end{subarray}_{\text {Rad }}$	wxo wxiose	wro	$\underset{\text { whrose }}{\text { whro }}$	${ }^{\text {wiso }}$	$\stackrel{\text { ro }}{\substack{\text { ro } \\ \text { ninas }}}$	$\underset{\substack{c \\ c \\ c \\ c}}{ }$	$\underset{\substack{\text { Ro } \\ \text { anare }}}{ }$	R34768 1 R34895	R35024 । R35151	$\underset{\substack{\text { R3s30 } \\ \text { neser }}}{ }$	$\underset{\substack{\text { casz24 } \\ \text { ancha }}}{ }$	$\begin{gathered} \text { oo } \\ \text { oungsp } \end{gathered}$	nber	${ }_{\text {vR }}$
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc

Description Operation of 16 -bit logical OR

- Performs logical OR operation for the data of Sa and Sb when the operation control input "EN" $=1$ or from 0 to 1 (P instruction). This operation compares the corresponding bits of Sa and Sb ($\mathrm{B} 0^{\sim} \mathrm{B} 15$ or $\mathrm{BO}{ }^{\sim} \mathrm{B} 31$). The bit in the D is set to 1 if one of the corresponding of Sa or Sb is 1 . The bit in the D is set to 0 if both of the corresponding bits of Sa and Sb is 0 .

6-27 BIN \rightarrow BCD CONVERSION

FUN 20 D P$\rightarrow \mathrm{BCD}$		$\mathrm{BIN} \rightarrow \mathrm{BCD}$ CONVERSION (Converts BIN data of the device specified at S into BCD and stores the result in D)												$\begin{aligned} & 0 \mathrm{DP} \\ & \mathrm{CD} \end{aligned}$
Command Description														
Conversion control - EN				$\begin{aligned} & \text { ler sym } \\ & \xrightarrow{\rightarrow \rightarrow B C} \end{aligned}$	ERR - Error (FOO)			Operand S : The register to be converted D: The register to store the converted data (BCD code) The S, D may combine with V, Z, PO~P9 to serve indirect addressing						
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxios } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrios } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wrosses } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wssose } \end{gathered}$	$\begin{gathered} \text { T0 } \\ \text { T1023 } \\ \hline \end{gathered}$	$\begin{gathered} c \\ c \\ c \\ c \end{gathered}$	$\begin{gathered} \text { Ro } \\ \text { R34767 } \end{gathered}$	$\begin{gathered} \text { R34768 } \\ \text { । } \\ \text { R34895 } \end{gathered}$	$\begin{gathered} \text { R35024 } \\ \text { R } \\ \text { R35151 } \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \text { \| } \\ \text { R43223 } \end{gathered}$	$\begin{gathered} \text { R43224 } \\ \text { R47319 } \end{gathered}$	$\begin{gathered} \hline \text { DO } \\ \text { \| } 11999 \end{gathered}$	$\begin{aligned} & \text { 16/32-bit } \\ & \text { +/-number } \end{aligned}$	$\begin{aligned} & v_{\text {popg }} \\ & \text { pop } \end{aligned}$
S	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	-	-	\bigcirc		\bigcirc
Description														

- FB-PLC uses binary code to store and to execute calculations. If want to send the internal PLC data to the external displays such as seven-segment displays, it is more convenient for us to read the result on screen by converting the BIN data to BCD data. For example, it is more clear for us to read the reading "12" instead of the binary code "1100."

Converts BIN data of the device specified at S into BCD and writes the result in D when the operation control input "EN" $=1$ or from 0 to 1 (\mathbf{P} instruction). If the data in S is not a BCD value ($0 \sim 9999$ or $0 \sim 9999999$), then the error flag FOO is set to 1 and the old data of D are retained.

6-28 BCD \rightarrow BIN CONVERSION

FUN 21 D $\rightarrow \mathrm{BIN}$	BCD \rightarrow BIN CONVERSION (Converts BCD data of the device specified at S into BIN and stores the result in D)		FUN 21 DP $\rightarrow \mathrm{BIN}$
Symbol			
Ladder symbol$\text { Conversion control - EN }\left[\begin{array}{l} 21 \mathrm{DP} . \rightarrow \mathrm{BIN} \\ \mathrm{~S}: \\ \mathrm{D}: \\ \end{array}\right] \text { ERR - Error (FOO) }$		Operand S: The register to be converted D: The register to store the conv (BIN code) The S, D may combine with V, Z, serve indirect addressing	erted data PO~P9 to

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	XR
$\begin{array}{\|l\|l} \text { oped } \\ \text { rand } \end{array}$	$\begin{gathered} w \times 0 \\ w \times x 108 \\ { }_{w} \end{gathered}$	$\begin{aligned} & \text { wro } \\ & \text { wrios } \end{aligned}$	$\begin{gathered} \text { Wmo } \\ \text { Wr2ssa } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wssos } \end{gathered}$		$\begin{gathered} c 0 \\ c \\ c \\ c \end{gathered}$	$\begin{array}{\|c} \text { R } \\ \text { R34767 } \end{array}$	R34768 \| R34895	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{aligned} & \text { R35280 } \\ & \text { Ras323 } \end{aligned}$	$\begin{gathered} \text { R43224 } \\ \text { \| } \\ \text { R47319 } \end{gathered}$	$\begin{gathered} \text { oo } \\ \text { 01.1999 } \end{gathered}$	VR, popg pope
S	\bigcirc												
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc	\bigcirc

Description

- The decimal (BCD) data must be converted to binary (BIN) data first in order for PLC to accept the data which is originally in decimal unit (BCD code) inputted from external device such as digital switch because the BCD data can not be accepted by PLC for its operations.
- Converts BCD data of the device specified at S into BIN and writes the result in D when the operation control input "EN" $=1$ or from 0 to 1 (\mathbf{P} instruction). If the data in S is not in $B C D$, then the error flag FOO is set to 1 and the old data of D are retained.
- Constant is converted to BIN automatically when store in program and can not be used as a source operand of this function.

Chapter 6 Basic Function Instructions

Advanced Function Instructions

7－1 Arithmetical Operation Instructions（FUN24～33） 錯誤！尚末定義書籤。
7－2
Logical Operation Instructions（FUN35～36）． 錯誤！尚末定義書籤。
7－3 Comparison Instructions（FUN37）． 35
7－4 Data Movement Instructions（FUN40～50） 37
7－5 Shifting／Rotating Instructions（FUN51～54） 51
7－6
Code Conversion Instructions（FUN55～64） 錯誤！尚末定義書䈅。
7－7 Flow Control Instructions II（FUN65～71）． 75
7－8 \quad／O Instructions－（FUN74～86） 99
7－9 Cumulateive Timer Instruction（FUN87～89） 117
7－10 Watchdog Timer Instructions（FUN90～91） 121
7－11 High Counting／Timing Instruction（FUN92～93） 錯誤！尚末定義書䈅。
7－12 Slow Up／Slow Down（FUN95～98） 130
7－13 Table Instruction（FUN100～114）． 139
7－14 Matrix Instruction（FUN120～130）． 173
7－15 NC Positioning Instruction（FUN137～143）． 189
7-16 Enable/Disable (FUN145~146) 230
7-17 NC Positioning Instructions II (FUN147 ~ 148) 236
7-18 Communication Instruction (FUN150~156) 242
7-19 Data Movement Instructions (FUN160 ~ 162) 260
7-20 In Line Comparison Instruction (FUN170~175) 270
7-21 Motion Control Instructions 282
7-22 Other Instructions (FUN115) 353
7-23 Floating Point Instructions (FUN200 ~ 220). 360

7-1 Arithmetical Operation Instructions (FUN24 ~ 33)

7-1-1 Summation of Block Data (SUM)

FUN24 D P SUM	SUM (Summation of block data)		FUN24 SUM
Symbol			
Ladder symbol$\text { Operation control -EN }\left[\begin{array}{l} \text { 24DP.SUM } \\ \mathrm{S}: \\ \mathrm{N}: \\ \mathrm{D}: \\ \end{array}\right]$		S: Starting number of source register N : Number of registers to be summed (successive N data units starting from S) D: The register which stored the result (summation) $\mathrm{S}, \mathrm{N}, \mathrm{D}$, can associate with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ index register to serve the indirect addressing application.	

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
${ }_{\substack{\text { Ope. } \\ \text { pand }}}^{\text {and }}$	$\begin{gathered} \text { wxo } \\ \text { wxxos } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wroos } \\ \text { wo } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wrosse } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wssos } \end{gathered}$	$\begin{gathered} \mathrm{rop} \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} \text { co } \\ \text { ci29 } \end{gathered}$	$\underset{\substack{\text { Ro } \\ \text { Ra3 } \\ \hline}}{ }$	$\begin{aligned} & \text { R39768888 } \\ & \text { Resese } \end{aligned}$	$\begin{gathered} \text { R35024 } \\ \text { । } \\ \text { R35151 } \\ \hline \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \mid \\ \text { R43223 } \end{gathered}$	$\begin{gathered} \hline \text { R43224 } \\ \mid \\ \text { R47319 } \end{gathered}$	No pil9s	¢	V,z
S	\bigcirc		\bigcirc											
N	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc

Description

- When operation control "EN" $=1$ or changes from $0 \rightarrow 1$ (P instruction), it puts the successive N units of 16bit or 32 bit (D instruction) registers for addition calculation to get the summation, and stores the result into the register which is designated by D.
- When the value of N is 0 or greater than 511 , the operation will not be performed.
- Communication port1~2 can be used to serve as a general-purpose ASCII communication interface. If the data error detecting method is Checksum, this instruction can be used to generate the sum value for sending data or ot use this instruction to check if the received data is error or not.

- The above illustrates that 6 16-bit registers starting from RO is calculated for summation, and the result is stored into the R100 register.

Example 2
When M 1 is ON , it calculates the summation for 32 -bit data.

$\left.\begin{array}{l}\mathrm{R} 1 \sim \mathrm{RO}=00310030 \mathrm{H} \\ \mathrm{R} 3 \sim \mathrm{R} 2=00330032 \mathrm{H} \\ \mathrm{R} 5 \sim \mathrm{R} 4=00410039 \mathrm{H}\end{array}\right] \mathrm{R} 101 \sim \mathrm{R} 100=00 \mathrm{~A} 5009 \mathrm{BH}$

- The above illustrates that three 32-bit registers starting from DRO, is calculated for their summation, and the result is stored into the DR100 register.

7-1-2 Average of Block Data (MEAN)

FUN25 DP MEAN	MEAN (Average of the block data)												$\begin{aligned} & \text { V25 DP } \\ & \text { IEAN } \end{aligned}$
Symbol													
$\underline{\text { Ladder symbol }}$Operation control - EN $\left.-\begin{array}{l}\text { 25DP.MEAN } \\ S:\end{array}\right]$							S: Source register number N: Number of registers to be averaged (N units of successive registers starting from S) D: Register number for storing result (mean value) The S, N, D may combine with V, Z, PO~P9 to serve indirect address application						
	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wro } \\ \text { wroos } \end{gathered}$		$\begin{gathered} \text { wso } \\ \text { wssose } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Tina } \end{gathered}$	$\begin{gathered} c \\ \text { cirg } \\ \text { ci27 } \end{gathered}$	$\begin{gathered} \text { Rop } \\ \text { Ra3 } 4676 \end{gathered}$		$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	R35280 \| R43223		$\begin{gathered} \text { Do } \\ \text { on19999 } \end{gathered}$	$\begin{array}{r} 1 \\ \hline 1 \\ \text { si1 } \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \mathrm{v}, \mathrm{z} \\ \text { pop9 } \end{array} \end{aligned}$
\bigcirc		\bigcirc											
N	\bigcirc												
D	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
Description													

- When operation control "EN" = 1 or from 0 to 1 (P instruction), add the N successive 16 -bit or 32-bit (D instruction) numerical values starting from S , and then divided by N . Store this mean value (rounding off numbers after the decimal point) in the register specified by D.
- While the N value is derived from the content of the register, if the N value is not between 1 and 256 , then the N range error "ERR" will be set to 1 , and do not execute the operation.
$\left.\begin{array}{|c|c|c|}\hline \text { FUN25 DP } \\ \text { MEAN }\end{array} \quad \begin{array}{c}\text { MEAN } \\ \text { (Average of the block data) }\end{array} \begin{array}{c}\text { FUN25 DP } \\ \text { MEAN }\end{array}\right]$
- The example program gets the mean value of the 3 successive 16 -bit registers starting from RO, and stores the results into the 16 -bit register R10

$\left.\begin{array}{c} \mathrm{S} \\ (\mathrm{~N}=3 \end{array}\right)$	R0	123	$\underline{123+9+788}$
	R1	9	
	R2	788	
		${ }_{\text {』 }} \mathrm{XO}=\bigcirc$	$\begin{aligned} & 3 \\ & =306 \text { (Rouding off the remainder) } \end{aligned}$
D	R10	306	

7-1-3 Take the Negative Value (NEGATION)

FUN27 \square NEG	NEGATION (Take the negative value)										FUN27 D NEG
Symbol											
D: Register to be negated D may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to serve indirect address application											
	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR
	$\begin{gathered} \hline \text { wro } \\ \text { wrioos } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wr29584 } \\ \text { wren } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wssosos } \end{gathered}$	$\begin{gathered} \mathrm{TO}_{0} \\ \text { T1023 } \end{gathered}$	$\begin{gathered} \text { co } \\ \text { c1279 } \\ \text { c129 } \end{gathered}$	$\begin{gathered} \hline \text { R0 } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \text { R35024 } \\ & \text { R } 85151 \end{aligned}$	$\begin{gathered} \text { R35280 } \\ \text { R4323 } \\ \hline \text { R430 } \end{gathered}$	$\begin{aligned} & \hline \text { Ra3324 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { o11999 } \end{gathered}$	$\begin{gathered} \hline \mathrm{v}, \mathrm{z} \\ \text { po.pg } \end{gathered}$
D	\bigcirc	○*	$\bigcirc *$	\bigcirc	\bigcirc						
Description											
- When operation control "EN" = 1 or from 0 to 1 (P instruction), negate (ie. calculate 2 's complement) the value of the content of the register specified by D , and store it back in the original D register. If the value of the content of D is negative, then the negation operation will make it positive.											
Example											
- The instruction at left negates the value of the RO register, and stores it back to RO.											

7-1-4 Take the Absolute Value (ABSOLUTE)

- When operation control "EN" $=1$ or from 0 to 1 (P instruction), calculate the absolute value of the content of the register specified by D, and write it back into the original D register.

7-1-5 Linear Conversion (LCNV)

FUN33 \mathbf{P} LCNV	Linear Conversion (LCNV)							FUN33 ${ }^{P}$ LCNV
Symbol								
Ladder symbol				Md: Operation mode, $0 \sim 3$ S: Starting address of the source data Ts: Starting address of the parameter table for conversion D: Starting address to store the result L: Quantity of conversion entry, 1~64				
	Range	HR	IR	ROR	DR	K	XR	
		${ }^{\text {Ro }}$	${ }^{\text {Ra4768 }}$	${ }^{\text {Ra3224 }}$	${ }^{\text {Do }}$		v,2	
	did	${ }^{\text {R3467 }}$	${ }_{\text {R3ass }}$	R97319	011999		po-p9	
	Md					0-3		
	S	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
	Ts	\bigcirc		\bigcirc	\bigcirc		\bigcirc	
	D	\bigcirc		○*	\bigcirc		\bigcirc	
	L	\bigcirc		\bigcirc	\bigcirc	1-64		
Description								

- When the analog input module being used for the analog measurement, the raw reading value of the analog input can be converted into the engineering range through this instruction for display or for proceeding control operation.
- When using temperature or analog modules for temperature or analog measurement applications, if the temperature or engineering readings measured by the PLC deviate from the results measured by standard thermometers or related standard instruments, this command can be used to make a linear correction as a correction for the actual measured value.
- When execution control "EN"=1 or from $0 \rightarrow 1$ (P instruction), this instruction will perform the linear conversion operation according to the mode selection, where S is the starting address of the source data, Ts is the starting address of the conversion parameter table, D is the starting address to store the converted result, and L is the quantity of conversion entry.
- There are two expressions to meet the suitable application:

Expression 1: Two points calibration method

Fill the conversion parameter table with the low value of measurement(VML), high value of measurement (VMH), and the corresponding low value of standard (VSL), high value of standard (VSH); the converted result (Dn) will be generated from the source data(Sn) through the formula shown below:

$A=(V S L-V S H / V M L-V M H) \times 10000$
$B=V S L-(V M L \times A / 10000)$
$D n=(S n \times A / 10000)+B$

- The range of operands VSL, VSH, VML, VMH, Sn and Dn are between -32768~32767.
- For analog input scaling, where:

VML=Minmum of analog input
VMH=Maximum of analog input
VSL=Minmum of engineering range
VSH=Maximum of engineering range
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { FUN33 } \boldsymbol{p} \\
\text { LCNV }\end{array}
$$ \quad \begin{array}{c}Linear Conversion

(LCNV)\end{array}\right]\)| FUN33 \boldsymbol{p} |
| :---: |
| LCNV |

Expression 2 : Multiplicator + Offset method

Fill the conversion parameter table with the values of multiplier(A), divisor(B) and offset(C); The converted result (Dn) will be generated from the source data (Sn) through the formula shown below:

$D n=[(S n \times A) / B]+C$
The range of each operand as below:
A = 1~65535
$B=1 \sim 65535$
$\mathrm{C}=-32768^{\sim} 32767$
Sn = 0~65535
Dn = -32768~32767

Description of operation mode

1. When $\mathrm{Md}=0$, the linear conversion works by expression 1 , and all source data share the same parameters VML, VMH, VSL and VSH for conversion.
2. When $\mathrm{Md}=1$, the linear conversion works by expression 1 , and each source data has the independent corresponding parameters VML, VMH, VSL, VSH for conversion; if there are N entries of source data, the conversion parameter table should have N groups of VML, VMH, VSL, VSH for working, there are $\mathrm{N} \times 4$ registers in the conversion parameter table.
3. When $\mathrm{Md}=2$, the linear conversion works by expression 2 , and all source data share the same parameters A, B and C for conversion.
4. When $\mathrm{Md}=3$, the linear conversion works by expression 2 , and each source data has the independent corresponding parameters $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for conversion; if there are N entries of source data, the conversion parameter table should have N groups of A, B, C for working, there are $\mathrm{N} \times 3$ registers in the conversion parameter table.

Description:

- When $M 0=1$, it will perform the mode 1 operation of linear conversion, where R100 is the starting address of the source data, R1000 is the starting address of the table of the conversion parameters VML, VMH, VSL, VSH, the quantity is 3, and R2000~R2002 will store the converted results.

FUN33 ${ }^{P}$ LCNV	Linear Conversion (LCNV)		FUN33 P LCNV
Example 3	Mode 2 of linear conversion		
Description: When $\mathrm{MO}=1$, it will perform the mode 2 operation of linear conversion, where R100 is the starting address of the source data, R1000 is the starting address of the table of the conversion parameters A, B, C, the quantity is 6 , and $R 2000 \sim R 2005$ will store the converted results.			

FUN33 ${ }^{\text {P }}$ LCNV	Linear Conversion (LCNV)					FUN33 P LCNV
	R100 R101 R102 R103 R104 R105	R1000 R1001 R1002 S 1000 2345 3560 401 568 2680	$\begin{aligned} & \\ & R 2000 \\ & R 2001 \\ & R 2002 \\ & \text { R2003 } \\ & \text { R2004 } \\ & \text { R2005 } \end{aligned}$	D 1005 2329 3526 415 579 2659		
Example 4	Mode 3 of linear conversion					
Description: When $M 0=1$, it will perform the mode 3 operation of linear conversion, where R100 is the starting address of the source data, R1000 is the starting address of the table of the conversion parameters A, B, C, the quantity is 4 , and R2000~R2003 will store the converted results.						

7-1-6 Multiple Linear Conversion (MLC)

FUN34 P MLC	Multiple Linear Conversion (MLC)	FUN34 MLC
Description		
When the analog input module being used for the analog measurement, the raw reading value of the analog input can be converted into the engineering range through this instruction for display or for proceeding control operation. - When using temperature or analog modules for temperature or analog measurement applications, if the temperature or engineering readings measured by the PLC deviate from the results measured by standard thermometers or related standard instruments, this command can be used to Make a linear correction as a correction for the actual measured value. When execution control "EN" $=1$ or from $0 \rightarrow 1$ (\mathbb{P} instruction), this instruction will perform the multiple linear conversion operation according to the selection of X / Y input; where Rs is the starting address of the source data, SI is the quantity of source data for conversion, Tx is the starting address of X conversion parameter table, $T y$ is the starting address of Y conversion parameter table, Tl is the quantity of X / Y table, D is the starting address to store the converted result. When executing and selection $X / Y=0$, it will compare the source data with the entities of $T X$ table to find the corresponding location in Tx table (The entities in Tx table must be in ascending sequence), and then calculate the linear conversion according to the located section of Tx and Ty table; When executing and selection $X / Y=1$, it will compare the source data with the entities of Ty table to find the corresponding location in Ty table (The entities in Ty table can either be in ascending or descending sequence), and then calculate the linear conversion according to the located section of Ty and Tx table. - When the source data is out of all entities of table, OVR=1. It wouldn't execute this instruction if illegal SI or TI .		

Expression:

The entities of Tx conversion parameter table must be in ascending sequence to have correct linear conversion; the entities of Ty conversion parameter table can either be in ascending or descending sequence. When executing this instruction, it will search the located section by comparing entities of the table with source data, and then calculate the linear conversion according to the following expression:
$V y=\left(V x-T x _n\right) \times\left(T y _n+1-T y _n / T x _n+1-T x _n\right)+T y _n$ if $X / Y=0$
$V x=\left(V y-T y _n\right) \times\left(T x _n+1-T x _n / T y _n+1-T y _n\right)+T x _n$ if $X / Y=1$
Value of Operand Vy, Vx, Tx_n, Tx_n+1, Ty_n, Ty_n+1 must be -32768~32767

Figure of multiple linear conversion:

FUN34 \mathbf{P}	Multiple Linear Conversion MLC	FUN34 \mathbf{P} MLC

Description:
When M10=1 , M11=0, R0 is the starting address of source data - R99 is the quantity of source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the starting address of Ty conversion parameter table, R199 is the quantity of table; the source data RO~R5 will be calculated the linear conversion according to Tx and Ty table between four sections, then store the results into D0~D5.

Description:
When $\mathrm{M} 10=1, \mathrm{M} 11=0$, take R 0 as the starting source data and R 99 as the source data length, according to the Tx conversion table starting from R1000 and the Ty conversion table starting from R2000, and R199 as the conversion table Length, perform 5-segment linear conversion operation on source data such as RO~R5, and store the conversion results in temporary registers DO~D5. In this example, when the value of the source data is less than or equal to 2000, the corresponding value is 280 ; when the value of the source data is greater than or equal to 8000 , the corresponding value is 970 .

Description:

When $\mathrm{M} 10=1, \mathrm{M} 11=0, \mathrm{R} 0$ is the starting address of source data, R 99 is the quantity of source data, R1000 is the starting address of Tx conversion parameter table, R2000 is the starting address of Ty conversion parameter table, R199 is the quantity of table; the source data RO~R5 will be calculated the linear conversion according to Tx and Ty table between three sections, then store the results into D0~D5. T In this example, when the value of the source data is $-8000 \sim 8000$, the corresponding value is $-100^{\sim} 2000$ according to the linear conversion shown in the figure below; when the value of the source data is $\geqq 8000$, the corresponding value is 2000 ; and the corresponding values are all -100.

FUN34 \mathbf{P} MLC	Multiple Linear Conversion (MLC)	FUN34 \mathbf{P} MLC	

監視頁									$\frac{\text { 븐 } x}{0}$
編䘠	註解								
編號	㸛態	資料	繷號	狀態	資料	編弱	㸛態	資科	編 ${ }^{\text {A }}$
R1000	十進制	3276	R2000	＋進制	0	R0	＋進制	0	
R1001	十進制	3276	R2001	＋進制	0	R1	＋進制	3276	
R1002	十進制	16000	R2002	＋進制	5000	R2	＋進制	4095	
R1003	十進制	16000	R2003	＋進制	5000	R3	十進制	9638	
						R4	十進制	16000	
						R5	＋進制	16380	
D0	十進制	0	M10	致能	ON	R99	＋萑制	6	
D1	十進制	0	M11	致能	OFF	R199	＋進制	4	
D2	十進制	321							
D3	十進制	2500							
D4	十進制	5000							
D5	十進制	5000							
									\checkmark
$1{ }^{1}$									－
StatusPage0									

Description：
When $\mathrm{M} 10=1, \mathrm{M} 11=0, \mathrm{R} 0$ is the starting address of source data， R 99 is the quantity of source data， R1000 is the starting address of Tx conversion parameter table，R2000 is the starting address of Ty conversion parameter table，R199 is the quantity of table；the source data RO～R5 will be calculated the linear conversion according to Tx and Ty table between three sections，then store the results into D0～D5．T In this example，when the value of the source data is $3276^{\sim} 16000$ ，the corresponding value is $0 \sim 5000$ according to the linear conversion shown in the figure below；when the value of the source data is $\geqq 16000$ ，the corresponding value is 5000 ；all are 0 ．

FUN34 \mathbf{P} MLC		Multiple Linear Conversion (MLC)	FUN34 MLC
			$\rightarrow \mathrm{X}$

7-2 Logical Operation Instructions (FUN35 ~ 36)

7-2-1 EXCLUSIVE OR (XOR)

FUN35 DP XOR	EXCLUSIVE OR (XOR)		FUN35 DP XOR
Symbol			

$\begin{array}{\|l\|} \substack{\text { openge } \\ \text { Rand } \\ \text { Rand }} \end{array}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	uxo	$\begin{gathered} \text { wro } \\ \text { wriog } \end{gathered}$	$\begin{gathered} \text { wno } \\ \text { whass4 } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wises } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c 0 \\ \text { c } 1279 \end{gathered}$	$\begin{gathered} \text { Rop } \\ \text { Re34767 } \end{gathered}$	R34768 R34895	Re3024 R35151	R33280 Ra3233	$\begin{aligned} & \text { Re322424 } \\ & \text { R27319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { on } 1.199 \end{gathered}$	16-bit	${ }_{\text {v, }}^{\text {vope }}$
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc

Description

- When operation control "EN" = 1 or changes from 0 to 1 (\mathbf{P} instruction), will perform the logical XOR (exclusive or) operation of data Sa and Sb . The operation of this function is to compare the corresponding bits of Sa and Sb ($\mathrm{B} 0^{\sim} \sim \mathrm{B} 15$ or $\mathrm{B} 0^{\sim} \mathcal{B} 31$), and if bits at the same position have different status, then set the corresponding bit within D as 1 , otherwise as 0 .
- After the operation, if all the bits in D are all 0 , then set the 0 flag " $\mathrm{D}=0$ " to 1 .

The instruction makes a logical XOR operation using the RO and R1 registers, and stores the result in R2.

$$
\begin{aligned}
& \text { Sa } \\
& \text { Sb } \\
& \text { 』 } \mathrm{XO}= \\
& \uparrow \\
& \text { D } \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\text { R2 } & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1
\end{array} 1
\end{aligned}
$$

7-2-2 EXCLUSIVE NOR (XNR)

FUN36 DP XNR	EXCLUSIVE NOR (XNR)			FUN36 DP XNR
Symbol				
$$				

	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	nxo	wo	wno	wso	I	1	${ }^{\text {R0 }}$	${ }^{\text {R34768 }}$	R35024	${ }^{\text {R35280 }}$	${ }^{\text {Ra3324 }}$	${ }_{0}^{00}$	6,bit	v, z
	wxi008	wrioos	wress	ws5088	ti103	${ }^{1} 179$	${ }_{834767}$	R39355	${ }_{\text {R35151 }}$	${ }_{\text {R4323 }}$	${ }_{\text {R47319 }}$	01199	t/number	pop9
Sa	\bigcirc													
Sb	\bigcirc													
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc

Description

- When operation control "EN" = 1 or changes from 0 to 1 (\mathbf{P} instruction), will perform the logical XNR (inclusive or) operation of data Sa and Sb . The operation of this function is to compare the corresponding bits of Sa and $\mathrm{Sb}\left(\mathrm{B} 0^{\sim} \mathrm{B} 15\right.$ or $\mathrm{B} 1^{\sim} \mathrm{B} 31$), and if the bit has the same value, then set the corresponding bit within D as 1 . If not then set it to 0 .
- After the operation, if the bits in D are all 0 , then set the 0 flag " $D=0$ " to 1 .

| FUN36 DP |
| :---: | :---: | :---: |
| XNR |\quad EXCLUSIVE NOR (XNR) | FUN36 D P |
| :---: |
| XNR |

X0 $\mathrm{EN}\left|\begin{array}{lll}\text { 36P.XNR } \\ \mathrm{Sa}: & R & 0 \\ \mathrm{Sb}: & \mathrm{R} & 1 \\ \mathrm{D}: & \mathrm{R} & 2\end{array}\right| \mathrm{D}=0$

- The instruction makes a logical XNR operation of the RO and R1 registers, and the results are stored in the R2 register.

D $\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { R2 } & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right) 0.0$.

7-3 Comparison Instructions (FUN37)

7-3-1 ZONE COMPARE (ZNCMP)

FUN3 ZN	DP	ZONE COMPARE											$\begin{array}{r} \text { FUN3 } \\ \text { ZNC } \end{array}$	$\begin{gathered} \mathrm{D} P \\ M P \end{gathered}$
Symbol														
Ladder symbol$\text { Operation control - EN }\left[\begin{array}{l} \text { 37DP.ZNCMP } \\ \mathrm{S}: \square \\ \mathrm{Su}: \square \\ \mathrm{SL}: \square \end{array} \quad-\begin{array}{l} \text { INZ }- \text { Inside zone } \\ \\ \\ \mathrm{S}>\mathrm{U}-\text { Higher than upper limit } \\ \mathrm{S}<\mathrm{L}-\text { Lower than lower limit } \\ \text { ERR }- \text { Limit value erroe } \end{array}\right.$								S: Register for zone comparison SU: The upper limit value SL: The lower limit value $\mathrm{S}, \mathrm{SU}, \mathrm{SL}$ may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{P} \mathrm{O}^{\sim} \mathrm{P9}$ to serve indirect address application						
$\begin{array}{\|l} \text { Range } \\ \text { one. } \\ \text { rand } \end{array}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{aligned} & w \times 0 \\ & w x 100 \end{aligned}$	$\begin{gathered} \text { wro } \\ \text { wrioo } \end{gathered}$	$\begin{array}{\|c} \hline \text { wMo } \\ \text { wwass4 } \end{array}$	$\begin{gathered} \text { wsio } \\ \text { wsso8 } \end{gathered}$	$\begin{aligned} & \mathrm{TO} \\ & \text { Ti02 } \end{aligned}$	$\begin{gathered} c o \\ c \end{gathered}$	$\begin{gathered} \text { Rop } \\ \text { R34767 } \end{gathered}$	R34768 R3495 R.	$\begin{array}{r} \text { Res5024 } \\ R \end{array}$	Resser	$\begin{aligned} & \text { R4322424 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ 011999 \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 1 \text { tumber } \end{array}$	v,z
S	\bigcirc		\bigcirc											
Su	\bigcirc													
SL	\bigcirc													
Description														

- When operation control "EN" = 1 or changes from 0 to 1 (\mathbf{P} instruction), compares S with upper limit SU and lower limit SL. If S is between the upper limit and the lower limit (SL \leqq S $\leqq S U$), then set the inside zone flag "INZ" to 1 . If the value of S is greater than the upper limit $S U$, then set the higher than upper limit flag " $S>U$ " to 1 . If the value of S is smaller then the lower limit SL, then set the lower than lower limit flag "S<L" as 1.
- The upper limit SU should be greater than the lower limit SL. If SU<SL, then the limit value error flag "ERR" will set to 1, and this instruction will not carry out.

- The instruction compares the value of R0 with the upper and lower limit zones formed by R1 and $R 2$. If the values of $R O \sim R 2$ are as shown in the diagram at bottom left, then the result can then be obtained as shown in the diagram below.
If want to get the status of out side the zone, you can use OUT NOT YO.

Results of execution

7-4 Data Movement Instructions (FUN40~50)

7-4-1 BIT READ (BITRD)

FUN40 D P BITRD	BIT READ		FUN40 D P BITRD
Symbol			

Range	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
$\left.\begin{array}{l} \text { ope. } \\ \text { rand } \end{array}\right\rangle$	wxo	WYO	WMO	wso	10	$c_{c}^{c o p}$	Ro		R35024	R35280	R43224	"o	16/32-bit	${ }_{\text {VR }}^{\text {v,z }}$
S	\bigcirc													
D	\bigcirc	0-31	\bigcirc											

Description

- When read control "EN" = 1 or changes from 0 to 1 (P instruction), take the Nth bit of the S data out, and put it to the output bit "OTB".
- When the operand is 16 -bit, the effective range for N is $0 \sim 15$. For 32 -bit operand (D instruction) it is $0^{\sim} 31$. N beyond this range will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

| FUN40 D P
 BITRD | BIT READ | FUN40 D P
 BITRD |
| :---: | :---: | :---: | :---: | :---: |
| Example | | |

The instruction reads the 7th bit (X7) status from WX0 (X0~X15) and output to Y0. The results are as follows:

7-4-2 BIT WRITE (BITWR)

Range	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
$\begin{aligned} & \text { Ope- } \\ & \text { rand } \end{aligned}$	$\begin{gathered} \text { wro } \\ \text { wrioo } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wr2954 } \end{gathered}$	$\underset{\substack{\text { wso } \\ \text { wssor8 }}}{ }$	$\begin{gathered} \stackrel{\text { TOO }}{0}_{1023} \end{gathered}$	$\begin{gathered} \text { co } \\ \text { ci29 } \end{gathered}$	$\begin{gathered} \text { R01 } \\ \text { R34767 } \end{gathered}$	$\underbrace{\text { R }}_{\substack{\text { R34768 } \\ \text { R34985 }}}$	$\begin{aligned} & \text { R.35024 } \\ & \text { R33151 } \end{aligned}$	$\begin{aligned} & \text { R33580 } \\ & \text { RA4323 } \\ & \text { R430 } \end{aligned}$	$\begin{aligned} & \text { R43224 } \\ & \text { R47319 } \end{aligned}$	¢00		pop9
D	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
N	\bigcirc												

Description

- When write control "EN" = 1 or changes from 0 to 1 (\mathbf{P} instruction), will write the write bit (INB) into the Nth bit of register D.

FUN41 DP BITWR	BIT WRITE	FUN41 $\mathbf{D P P}$ BITWR

- When the operand is 16 -bit, the effective range of N is $0^{\sim} 15$. For 32-bit (D instruction) operand it is $0^{\sim} 31$. N beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.
- The instruction writes the status of the write bit INB into B3 of RO. Assuming X1 = 1, the result will be as follows:

7-4-3 BIT MOVE (BITMV)

$\begin{array}{r} \text { FUN42 } \\ \text { BITN } \end{array}$	DP V	BIT MOVE												$\begin{aligned} & 2 \mathrm{DP} \\ & \mathrm{MV} \end{aligned}$
Symbol														
$\text { Move control-EN }\left[\begin{array}{l} \text { Ladder symbol } \\ {\left[\begin{array}{lll} \text { 42DP.BITMV } \\ \mathrm{S} & : \\ \mathrm{Ns} & \\ \mathrm{D} & \vdots & \\ \mathrm{Nd} & \\ \hline \end{array}\right.} \\ \hline \end{array}\right.$					ERR - N value error		S: Source data to be moved Ns: Assign Ns bit within S as source bit D: Destination register to be moved Nd: Assign Nd bit within D as target bit $\mathrm{S}, \mathrm{Ns}, \mathrm{D}, \mathrm{Nd}$ may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to serve indirect address application							
$\prod_{\substack{\text { one. } \\ \text { Rend } \\ \text { rand }}}^{\text {Rat }}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxioo } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { whlos } \end{gathered}$	$\begin{gathered} \text { wMo } \\ \text { wross4 } \end{gathered}$	$\begin{gathered} \substack{\text { wso } \\ \text { ws.0888 }} \end{gathered}$	$\begin{gathered} \mathrm{TO} \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c 0 \\ c \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	Re3768 R3385 R.	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	¢	$\begin{aligned} & \text { Rer3223 } \\ & \text { R49419 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { o119999 } \end{gathered}$	$\begin{aligned} & \text { 16/32-bit } \\ & \text { +/-number } \end{aligned}$	XR v / z popg
S	\bigcirc													
Ns	\bigcirc	0-31	\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
Nd	\bigcirc	0-31	\bigcirc											
Description														

- When move control "EN" = 1 or changes from 0 to 1 (\mathbf{P} instruction), will move the bit status specified by Ns within S into the bit specified by Nd within D .
- When the operand is 16 -bit, the effective range of N is $0^{\sim} 15$. For 32-bit (D instruction) operand the effective range is $0 \sim 31 . \mathrm{N}$ beyond this range will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

- The instruction at left moves the status of B11 (X11) within S into the B7 position within D. Except bit B7, other bits within D does not change.

7-4-4 NIBBLE MOVE (NBMV)

FUN43 DP NBMV	NIBBLE MOVE	
Symbol		
Ladder symbol$\text { Move control - EN }\left[\begin{array}{l} \text { 43DP.NBMV- } \\ \mathrm{S}: \\ \mathrm{Ns}: \\ \mathrm{D}: \\ \mathrm{Nd}: \\ \mathrm{Nd} \end{array}\right] \text { ERR - N value error }$		S: Source data to be moved Ns: Assign Ns nibble within S as source nibble D: Destination register to be moved Nd : Assign Nd nibble within D as target nibble S, Ns, D, Nd may combine with V, Z, PO~P9 to serve indirect address application

	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxpos } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { whyo } \\ \text { who } \end{gathered}$	$\begin{gathered} \text { uno } \\ \text { whose } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wsises } \\ \text { wso } \end{gathered}$	$\begin{gathered} \boldsymbol{c}_{0}^{702} \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c \\ \substack{1279} \\ c \end{gathered}$	$\begin{gathered} \text { Ro } \\ \text { R34767 } \end{gathered}$	${ }^{\text {R34768 }}$	R35024 \|	R35280	R43224	-	trumber	pope
S	\bigcirc													
Ns	\bigcirc	0-7	\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
Nd	\bigcirc	0-7	\bigcirc											

Description

- When move control "EN" $=1$ or has a transition from 0 to 1 (P instruction), will move the $N s^{\prime}$ th nibble from within S to the nibble specified by $N d$ within D. (A nibble is comprised by 4 bits. Starting from the lowest bit of the register, BO , each successive 4 bits form a nibble, so BO~B3 form nibble $0, B 4 \sim B 7$ form nibble 1 , etc...)
- When the operand is 16 -bit, the effective range of Ns or Nd is $0^{\sim} 3$. For 32-bit (D instruction) operand the range is $0 \sim 7$. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

- The instruction moves the third nibble NB2 (B8~B11) within S to the first nibble NB1 (B4~B7) within D. Other nibbles within D remain unchanged.

7-4-5 BYTE MOVE (BYMV)

FUN44 BYM		BYTE MOVE												$4 D P$ MV
Symbol														
S: Source data to be moved Ns: Assign Ns byte within S as source byte D: Destination register to be moved Nd: Assign Nd byte within D as target byte S, Ns, D, Nd may combine with V, Z, PO~P9 to serve indirect address application														
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} w \times 0 \\ \text { wxioos } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { whros } \end{gathered}$	$\begin{gathered} \text { wMo } \\ \text { wross } \end{gathered}$		$\begin{aligned} & \mathrm{TO} \\ & \text { Ti023 } \end{aligned}$	$\begin{gathered} c \\ c \end{gathered}$	$\begin{gathered} \text { R00 } \\ \text { R34767 } \end{gathered}$	$\begin{gathered} \text { R34768 } \\ \text { । } \\ \text { R34895 } \end{gathered}$	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \text { \| } \\ \text { R43223 } \end{gathered}$	$\begin{gathered} \text { R43224 } \\ \text { \| } \\ \text { R47319 } \end{gathered}$	$\begin{gathered} \text { Do } \\ \text { onil9999 } \end{gathered}$	$\begin{aligned} & \text { 16/32-bit } \\ & \text { +/-number } \end{aligned}$	$\begin{aligned} & \mathrm{v}, \mathrm{z} \\ & \text { popg } \end{aligned}$
S	\bigcirc													
Ns	\bigcirc	0-3	\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
Nd	\bigcirc	0-3	\bigcirc											
Description														

- When move control "EN" = 1 or has a transition from 0 to 1 (P instruction), move Nsth byte within S to Ndth byte position within D. (A byte is comprised of 8 bits. Starting from the lowest bit of the register, B0, each successive eight bits form a byte, so BO~B7 form byte 0 , B8~B15 form byte 1, etc...)
- When the operand is 16 bit, the effective range of Ns or Nd is $0 \sim 1$. For 32 bit (D instruction) operand, the range is $0^{\sim} 3$. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

7-4-6 EXCHANGE (XCHG)

FUN45 XCHG		EXCHANGE									$\begin{aligned} & 45 \text { DP } \\ & \text { HG } \end{aligned}$
Symbol											
Ladder symbol Exchange control $-\mathrm{EN}\left\{\begin{array}{l}\text { 45DP.XCHG } \\ \mathrm{Da}: \\ \mathrm{Db}:\end{array}\right]$						Da: Register a to be exchanged Db : Register b to be exchanged Da, Db may combine with V, Z, PO~P9 to serve indirect address application					
	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR
	$\begin{gathered} \text { wro } \\ \text { wr1008 } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wr29584 } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { ws5088 } \end{gathered}$	$\begin{gathered} \mathrm{To} \\ \text { T1023 } \end{gathered}$	$\begin{gathered} \text { co } \\ \text { c1279 } \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \text { R} 35024 \\ & \text { R35151 } \end{aligned}$	$\begin{aligned} & \text { R } 35280 \\ & \text { R43223 } \end{aligned}$	R43224 R47319	$\begin{gathered} \text { Do } \\ \text { 011999 } \end{gathered}$	$\begin{gathered} \hline \mathrm{v}, \mathrm{z} \\ \mathrm{popg} \end{gathered}$
Da	\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc	\bigcirc						
Db	\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc	\bigcirc						
Description											

- When exchange control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), will exchanges the contents of register Da and register Db in 16 bits or 32 bits (D instruction) format.

Example

The instruction exchanges the contents of the 16-bit RO and R1 registers.

7-4-7 BYTE SWAP (SWAP)

FUN46 \mathbf{P} SWAP	BYTE SWAP			FUN46 P SWAP
Symbol				
Swap control - EN	Ladd 46P. SWAP	mbol D	D: Register for byte data swap D may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P} 9$ to serve indirect address application	

	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	XR
	$\begin{gathered} \hline \text { wro } \\ \text { wr1008 } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wr29584 } \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { wso } \\ \text { ws5088 } \end{array} \end{gathered}$	$\begin{gathered} \text { T0 } \\ \text { T1023 } \end{gathered}$	$\begin{gathered} \hline \text { co } \\ \text { c1279 } \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \hline \text { R35024 } \\ & \text { R35151 } \end{aligned}$	$\begin{aligned} & \text { R35280 } \\ & \text { R13223 } \end{aligned}$	$\begin{aligned} & \hline \text { R43224 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \hline \text { D0 } \\ \text { 011999 } \end{gathered}$	v,z popg
D	\bigcirc	○*	$\bigcirc *$	\bigcirc	\bigcirc						

Description

The instruction swaps the data of the low byte ($\mathrm{B} 0^{\sim} \mathrm{B} 7$) and the high byte $\left(\mathrm{B} 8^{\sim} \mathrm{B} 15\right)$ in RO . The results are as follows:

$$
\begin{aligned}
& \text { Byte1 Byte0 } \\
& \text { D } \\
& { }_{\Omega} X 0=』
\end{aligned}
$$

7-5 Shifting/Rotating Instructions (FUN51 ~ 54)

7-5-1 SHIFT LEFT (SHFL)

FUN5 SH		SHIFT LEFT											$\begin{array}{r} \text { FUN } \\ \text { St } \end{array}$	$1 \text { DP }$ FL
Symbol														
								D: Register to be shifted N : Number of bits to be shifted N, D may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to serve indirect address application						
$\prod_{\substack{\text { ope } \\ \text { rand } \\ \text { range }}}^{\substack{\text { Ren } \\ \hline}}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxios } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrios } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wrosse } \end{gathered}$	$\begin{gathered} \text { wsio } \\ \text { ws5088 } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { T1023 } \end{gathered}$	$\begin{gathered} c 0 \\ \text { c129 } \end{gathered}$	$\begin{array}{\|c} \text { Rop } \\ \text { R34767 } \end{array}$	$\begin{aligned} & \text { R32778 } \\ & \text { R3485 } \end{aligned}$	$\begin{aligned} & \text { R35024 } \\ & \text { R} 35151 \end{aligned}$	$\begin{aligned} & \text { R35380 } \\ & \text { R432323 } \end{aligned}$		$\begin{gathered} \text { po } \\ \text { p119999 } \end{gathered}$		v, popg
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	$\bigcirc *$	\bigcirc		\bigcirc
N	\bigcirc													
Description														

- When shift control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), will shift the data of the D register towards the left by N successive bits (in ascending order). After the lowest bit BO has been shifted left, its position will be replaced by shift-in bit INB, while the status of shiftout bits B15 or B31 (Dinstruction) will appear at shift-out bit "OTB".
- If the operand is 16 bits, the effective range of N is $1 \sim 16$. For 32 bits (D instruction) operand, it is $1 \sim 32$. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

| FUN51 DP
 SHFL | SHIFT LEFT | FUN51 DP
 SHFL |
| :---: | :---: | :---: | :---: |
| Example | | |
| M0 | | |

- The instruction shifts the data in register R0 towards the left by 4 successive bits. The results are shown below.

$$
\begin{aligned}
& \left.{ }_{\Omega} X 0=\right\lrcorner
\end{aligned}
$$

7-5-2 SHIFT RIGHT (SHFR)

FUN5 SHF	$\begin{aligned} & 2 \mathrm{DP} \\ & \mathrm{R} \end{aligned}$	SHIFT RIGHT											$\begin{array}{r} \mathrm{FUN} \\ \mathrm{SH} \end{array}$	DP
Symbol														
Shift control-EN Shift in bit — INB					- Shift $R-N \text { va }$	out bit e error	D: Register to be shifted N : Number of bits to be shifted D, N may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P} 9$ to serve indirect address application							
$\begin{array}{\|l\|l\|} \substack{\text { Renge. } \\ \text { Rend } \\ \text { rand }} \end{array}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { xxo } \\ \text { wxxac } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrioo } \end{gathered}$	$\begin{gathered} \text { wMo } \\ \text { wh29s4 } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wssose } \end{gathered}$	$\begin{gathered} \text { TO } \\ \text { T1023 } \end{gathered}$	$\begin{gathered} c \\ c_{1}^{c} \\ \text { 1279 } \end{gathered}$	$\begin{gathered} \text { Rop } \\ \text { R34767 } \end{gathered}$	R34768 । R34895	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \text { \| } \\ \text { R43223 } \end{gathered}$	$\begin{aligned} & \text { RA3234 } \\ & \text { RA4319 } \end{aligned}$	$\begin{gathered} \text { 00 } \\ \text { o119999 } \end{gathered}$		V,z
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	$\bigcirc *$	\bigcirc		\bigcirc
N	\bigcirc													
Description														

- When shift control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), will shift the data of D register towards the right by N successive bits (in descending order). After the highest bits, B15 or B31 (D instruction) have been shifted right, their positions will be replaced by the shiftin bit INB, while shift-out bit BO will appear at shift-out bit "OTB".
- If the operand is 16 bits, the effective range of N is $1^{\sim} 16$. For 32 bits (D instruction) operand, it is $1 \sim 32$. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

- The instruction at left shifts the data in RO register towards the right by 15 successive bits. The results are shown below.

$$
\begin{aligned}
& \begin{array}{c}
\text { INB B15 } \\
\qquad \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & \text { RO } \\
\hline \triangle & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \text { 』 } \mathrm{XO}=\boldsymbol{\sim}
\end{aligned}
$$

7-5-3 ROTATE LEFT (ROTL)

$\begin{array}{r} \text { FUN5 } \\ \text { RO } \end{array}$	$3 \mathrm{DP}$ T	ROTATE LEFT											$\begin{array}{r} \text { FUN5 } \\ \text { RO } \end{array}$	
Symbol														
$\underbrace{\text { Ros. }}_{\substack{\text { ope. } \\ \text { Range } \\ \text { rand }}}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{aligned} & w \times 0 \\ & w \times 100 \\ & w \end{aligned}$	$\begin{gathered} \text { wro } \\ \text { wrioo } \end{gathered}$	$\begin{gathered} \text { WMO } \\ \text { who9ss4 } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wsso8 } \end{gathered}$	$\begin{gathered} \mathrm{TO} \\ \text { T1023 } \end{gathered}$	$\begin{gathered} c 0 \\ c \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	$\begin{gathered} \text { R34768 } \\ \text { \| } \\ \text { R34895 } \end{gathered}$	$\begin{aligned} & \text { R33024 } \\ & \text { R33151 } \end{aligned}$	$\begin{aligned} & \text { R35380 } \\ & \text { R4323 } \\ & \hline \text { R43 } \end{aligned}$	$\begin{aligned} & \text { R4324 } \\ & \hline \text { R47319 } \\ & \text { R4 } \end{aligned}$	$\begin{gathered} \text { co } \\ \text { 0119999 } \end{gathered}$	$\begin{gathered} 101 \\ 101612 \\ 16 \end{gathered}$	XR, popg pop
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
N	\bigcirc													
Description														

- When rotate control "EN" = 1 or has a transition from 0 to 1 (『instruction), will rotate the data of D register towards the left by N successive bits (in ascending order, ie. in a 16-bit instruction, $B 0 \rightarrow B 1, B 1 \rightarrow B 2, \ldots ., B 14 \rightarrow B 15, B 15 \rightarrow B 0$. In a 32 -bit instruction, $B 0 \rightarrow B 1, B 1 \rightarrow B 2, \ldots ., B 30 \rightarrow B 31$, $B 31 \rightarrow B 0$). At the same time, the status of the rotated out bits B15 or B31 (D instruction) will appear at rotate-out bit "OTB".
- If the operand is 16 bits, the effective range of N is $1^{\sim} 16$. For 32 bits (D instruction) operand, it is $1 \sim 32$. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

FUN53 DP ROTL	ROTATE LEFT		FUN53 DP ROTL
Example			

- The instruction rotates data from the RO register towards the left 9 successive bits. The results are shown below.

$$
\sqrt{\wedge} \times 0=\boldsymbol{\wedge}
$$

$\underset{*}{1} \mathrm{YO}$

7-5-4 ROTATE RIGHT (ROTR)

- When rotate control "EN" = 1 or has a transition from 0 to 1 (P instruction), will rotate the bit data of D register towards the right by N successive bits (in descending order, ie. in a 16-bit instruction, $\mathrm{B} 15 \rightarrow \mathrm{~B} 14, \mathrm{~B} 14 \rightarrow \mathrm{~B} 13, \ldots ., \mathrm{B} 1 \rightarrow \mathrm{~B} 0, \mathrm{~B} 0 \rightarrow \mathrm{~B} 15$. In a 32-bit instruction, $\mathrm{B} 31 \rightarrow \mathrm{~B} 30$, $B 30 \rightarrow B 29, \ldots ., B 1 \rightarrow B 0, B 0 \rightarrow B 31)$. At the same time, the status of the rotated out $B 0$ bits will appear at the rotate-out bit "OTB".
- If the operand is 16 bits, the effective range of N is $1 \sim 16$. For 32 bits (D instruction) operand, it is $1 \sim 32$. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this instruction.

| FUN54 DP
 ROTR | ROTATE RIGHT | FUN54 DP
 ROTR |
| :---: | :---: | :---: | :---: |
| Example | | |
| X0 | | |

- The instruction rotates data from RO register towards the right 8 successive bits. The results are shown below.

7-6 Code Conversion Instructions (FUN55 ~ 64)

7-6-1 BINARY-CODE TO GRAY-CODE CONVERSION (B \rightarrow G)

$\sum_{\substack{\text { ope. } \\ \text { Range } \\ \text { and }}}^{\substack{\text { Re }}}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxilos } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrioos } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wrossea } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wssose } \end{gathered}$	$\begin{gathered} \mathrm{c}_{10} \\ \text { Titas } \end{gathered}$	$\begin{gathered} \text { co } \\ \text { ci279 } \end{gathered}$	$\begin{array}{\|c} \text { Ro } \\ \text { Ra376 } \end{array}$	$\begin{aligned} & \text { Re37788 } \\ & \text { R3ases } \end{aligned}$	R35024 R R35151	$\begin{gathered} \text { R35280 } \\ \text { \| } \\ \text { R43223 } \end{gathered}$	$\begin{gathered} \mathrm{R} 43224 \\ \mathrm{R} 47319 \end{gathered}$	$\begin{gathered} \text { Do } \\ \text { 1119999 } \end{gathered}$	$\begin{aligned} & \text { 16/32-bit } \\ & \text { +/-number } \end{aligned}$	VR, z popg
S	\bigcirc		\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	○*	\bigcirc		\bigcirc

Description

- When the execution control "EN" $=1$ or from $0 \rightarrow 1$ (P instruction), convert the binary code of the S register to Gray code.
- When the conversion bit is less than 16 bits, a temporary register is needed to store the conversion result. When it is greater than or equal to 16 bits, two registers are required (D instruction).
- The conversion method shown as below

FUN55 DP $\mathrm{B} \rightarrow \mathrm{G}$	BINARY-CODE TO GRAY-CODE CONVERSION	FUN55 $\mathrm{B} \rightarrow \mathrm{G}$
Example1		
When MO is f	from OFF \rightarrow ON, convert RO (binary code) into Gray code, and	in R100. B
Example2	When $\mathrm{MO}=1$, it will perform the 32 -bit code conversion	
When MO is ON, convert DRO (binary code) to Gray code, and then store it in DR100.		

7-6-2 GRAY-CODE TO BINARY-CODE CONVERSION (G \rightarrow B)

FUN G	$\begin{aligned} & 6 \text { DP } \\ & \text { B } \end{aligned}$	GRAY-CODE TO BINARY-CODE CONVERSION											FUN56$G \rightarrow B$	
Symbol														
Ladder symbol$\text { eration control - EN } \begin{cases}56 D P . G \rightarrow B \\ S & : \\ D & :\end{cases}$							S: Starting of source D: Starting address of destination S, D operand can combine V, Z, PO~P9 for index addressing							
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} w \times 0 \\ \text { wxioos } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrios } \end{gathered}$		$\begin{gathered} \text { wso } \\ \text { wssose } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Ti023 } \end{gathered}$	$\begin{gathered} \mathrm{c} \\ \text { ci29 } \end{gathered}$	$\begin{gathered} \text { Rop } \\ \text { Ra3767 } \end{gathered}$	$\begin{aligned} & \text { R337288 } \\ & \text { Rases } \\ & \text { Rases } \end{aligned}$	$\begin{aligned} & \text { R35324 } \\ & \text { R35151 } \end{aligned}$	R35280 R43223 R	$\begin{aligned} & \text { Ra3224 } \\ & \text { Ra7319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { o119999 } \end{gathered}$	$\begin{aligned} & \text { 16/32-bit } \\ & \text { +/-number } \end{aligned}$	$\begin{aligned} & \hline v, z \\ & \hline \text { pope } \end{aligned}$
S	\bigcirc		\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	-	-*	\bigcirc		\bigcirc
Description														

- When the execution control "EN"=1 or from $0 \rightarrow 1$ (P instruction), convert the binary code of the S register to Gray code.
- When the conversion bit is less than 16 bits, a temporary register is needed to store the conversion result. When it is greater than or equal to 16 bits, two registers are required (D instruction).
- The conversion method shown as below:

FUN56 $G \rightarrow B$	GRAY-CODE TO BINARY-CODE CONVERSION	FUN56 $\mathrm{G} \rightarrow \mathrm{~B}$
Example1		
When MO is from OFF \rightarrow ON, convert DO (binary code) into Gray code, and then store it in D100.		
Example2	When $M 0=1$, it will perform the 32 -bit code conversion	
When MO is ON, convert DDO (binary code) to Gray code, and then store it in DD100		

7-6-3 HOUR: MINUTE : SECOND \rightarrow SECOND

$\begin{gathered} \text { FUN61 } \\ \rightarrow \text { SEC } \end{gathered}$		HOUR : MINUTE : SECOND \rightarrow SECOND									$\begin{gathered} \text { FUN61 } \\ \rightarrow \text { SEC } \end{gathered}$	
Symbol												
$\begin{gathered} \quad \text { Ladder symbol } \\ \text { Conversion control - EN } \\ {\left[\begin{array}{l} 61 \mathrm{P} . \rightarrow \mathrm{SEC} \\ \mathrm{~S} \\ \mathrm{D}: \\ \mathrm{D} \end{array}\right.} \end{gathered} \quad-\mathrm{D=0-} \mathrm{Result} \mathrm{as} \mathrm{0}$						S: Starting calendar data register to be converted D: Starting register storing results						
Range Ope. and	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR
	$\begin{gathered} \hline w \times 0 \\ w \times 1008 \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wr1008 } \end{gathered}$	$\begin{gathered} \text { wmo } \\ \text { wr29584 } \end{gathered}$	$\begin{gathered} \text { W50 } \\ \text { ws5088 } \\ \text { wso } \end{gathered}$	$\begin{gathered} \mathrm{TO}_{0} \\ \text { T1023 } \end{gathered}$	$\begin{gathered} { }_{c}^{c} 12 \\ \text { c1279 } \end{gathered}$	$\begin{gathered} \substack{\text { R0 } \\ \text { R34767 }} \end{gathered}$	$\begin{aligned} & \text { R34768 } \\ & \text { R33495 } \\ & \hline \text { R3485 } \end{aligned}$	$\begin{aligned} & \text { R} 35024 \\ & \text { R35151 } \end{aligned}$	$\begin{aligned} & \text { R35280 } \\ & \text { R4323 } \end{aligned}$	$\begin{aligned} & \text { R4322424 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { p1199999 } \end{gathered}$
S	\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc
Description												

FUN61 \boldsymbol{P} \rightarrow SEC	HOUR : MINUTE : SECOND \rightarrow SECOND	FUN61 \boldsymbol{P} \rightarrow SEC

- When conversion control "EN" $=1$ or has a transition from 0 to 1 (\mathbf{P} instruction), will convert the hour: minute: second data of $\mathrm{S} \sim \mathrm{S}+2$ into an equivalent value in seconds and store it into the 32-bit register formed by combining D and $D+1$. If the result $=0$, then set the " $D=0$ " flag as 1.
- Among the Fatek-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3 words of register to store the time data, as shown in the diagram below. The first word is the second register, the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of each register, only B14~BO are used to represent the time value. While bit B15 is used to express whether the time values are positive or negative. When B 15 is 0 , it represents a positive time value, and when B 15 is 1 it represents a negative time value. The $\mathrm{B} 14 \sim \mathrm{BO}$ time value is represented in binary, and when the time value is negative, $B 14^{\sim} B O$ is represented with the 2 's complement. The number of seconds that results from this operation is the result of summation of seconds from the three registers representing [hour: minute: second].

B15 B14	
S (sec)	-32768 sec $\sim 32767 \mathrm{sec}$
$\mathrm{S}+1(\mathrm{~min})$	-32768 min $\sim 32767 \mathrm{~min}$
S+2 (hr)	-32768 hr $\sim 32767 \mathrm{hr}$

The B15 of each register is used to represent the sign of each time value
\uparrow B31 is used to represent the positive or negative nature of the sec. value

- Any [hour: minute: second] time data will be automatically merged and used except when accessing with FUN61 or 62 instructions. Other instructions will regard it as an individual general register and will not be automatically merged and used, there is no relationship between the 3 registers, so you can operate on any data of hours, minutes, and seconds separately, and the results will not affect each other.

7-6-4 SECOND \rightarrow HOUR : MINUTE : SECOND

$\begin{aligned} & \text { FUN62 } \\ & \rightarrow \mathrm{HMS} \end{aligned}$		SECOND \rightarrow HOUR : MINUTE : SECOND											$\begin{aligned} & \text { FUN62 } \\ & \rightarrow \text { HMS } \end{aligned}$
Symbol													
Conversion control - EN $\left\{\right.$$\begin{array}{l}\text { Ladder symbol } \\ \text { 62P. } \\ \text { S HMS } \\ \mathrm{D}: \\ \mathrm{D}:\end{array}$$-$ D $=0-$ Result as $0 \quad \begin{array}{l}\text { S: Starting register of second to be converted } \\ \text { D: Starting register storing result of conversion } \\ \text { (hour : minute : second) }\end{array}$													
$\sum_{\substack{\text { Opene } \\ \text { Rand }}}^{\text {Range }}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
	$\begin{gathered} \boldsymbol{c}_{w \times 0} \\ w \times 100 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { wro } \\ \text { wrioos } \end{array}$	$\begin{array}{\|c\|c\|c\|} \hline \text { wMo } \\ \text { wrossa4 } \end{array}$	$\begin{gathered} \text { wso } \\ \text { wssos } \end{gathered}$	$\begin{gathered} { }^{00} 0 \\ \text { T10203 } \end{gathered}$	$\begin{gathered} c 0 \\ c \\ \text { c129 } \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R33767 } \end{gathered}$	$\begin{aligned} & \text { R24778 } \\ & \text { R34395 } \end{aligned}$	R3522 R3351	$\begin{aligned} & \text { R} 35280 \\ & \text { R43232 } \end{aligned}$	$\begin{aligned} & \text { R43234 } \\ & \text { R47419 } \end{aligned}$	$\begin{gathered} \text { 00 } \\ \text { p119999 } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline-117968399 \\ \hline 117967999 \end{array}$
S	\bigcirc												
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc	

FUN62 \mathbf{P} $\rightarrow H M S$	SECOND \rightarrow HOUR : MINUTE : SECOND	FUN62 \mathbf{P} \rightarrow HMS
Description		

- When conversion control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), will convert the second data from the $S^{\sim} S+1$ 32-bit register into the equivalent hour : minute : second time value and store it in the three successive registers $\mathrm{D}^{\sim} \mathrm{D}+2$. All the data in this instruction is represented in binary (if there is a negative value it is represented using the 2's complement.)

- As shown in the diagram above, after convert to hour : minute : second value, the minute : second value can only be in the range of -59 to 59 , and the hour number can be in the range of -32768 to 32767 hours. Because of this, the maximum limit of D is -32768 hours, -59 minutes, -59 seconds to 32767 hours, 59 minutes, 59 seconds, the corresponding second value of S which is in the range of -117968399 to 117964799 seconds. If the S value exceeds this range, this instruction cannot be carried out, and will set the over range flag "OVR" to 1 . If $\mathrm{S}=0$ then result is 0 flag " $\mathrm{D}=0$ " will be set to 1 .

| FUN62 \mathbf{P}
 $\rightarrow H M S$ | SECOND \rightarrow HOUR : MINUTE : SECOND
 \rightarrow HMS |
| :---: | :---: | :---: |
| Example | |

- The program in the diagram below is an example of this instruction. Please note that the contents of the registers are denoted by hexadecimal, and on the right is its equivalent value in decimal notation.

7-6-5 CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE (ASCII \rightarrow HEX)

FUN63 P \rightarrow HEX	CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE													FUN63 P \rightarrow HEX
Symbol														
S: Starting source register. N: Number of ASCII codes to be converted to hexadecimal values. D: The starting register that stores the result (hexadecimal value). $\mathrm{S}, \mathrm{N}, \mathrm{D}$, can associate with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to do the indirect addressing application.														
	WX	WY	WM	WS	TM	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{array}{\|c\|} w \times 0 \\ w \times 1 \\ 008 \end{array}$	$\begin{aligned} & \text { WYO } \\ & \text { WY1 } \\ & 008 \end{aligned}$	$\begin{aligned} & \text { WMO } \\ & \text { WM2 } \\ & 9584 \end{aligned}$	$\begin{aligned} & \text { Ws0 } \\ & \text { ws3 } \\ & 088 \end{aligned}$	$\left.\begin{array}{\|c} \text { TO } \\ \text { T10 } \\ 23 \end{array} \right\rvert\,$	$\begin{gathered} \mathrm{CO} \\ \mathrm{c} 12 \\ 79 \end{gathered}$	$\begin{gathered} \text { RO } \\ \text { R34 } \\ 767 \end{gathered}$	$\begin{aligned} & \text { R34 } \\ & 768 \\ & \text { R34 } \\ & 895 \end{aligned}$	$\begin{aligned} & \hline \text { R35 } \\ & 024 \\ & \text { R35 } \\ & 151 \end{aligned}$	$\begin{aligned} & \text { R35 } \\ & 280 \\ & \text { R43 } \\ & 203 \end{aligned}$	$\begin{aligned} & \text { R43 } \\ & 224 \\ & \text { R47 } \\ & 319 \end{aligned}$	$\begin{gathered} \text { DO } \\ \text { D11 } \\ 999 \end{gathered}$	16-bit +num ber	$\begin{array}{\|c} \mathrm{V} \cdot \mathrm{Z} \\ \mathrm{PO} \mathrm{P} \\ 9 \end{array}$
S	\bigcirc		\bigcirc											
N	\bigcirc	1~	\bigcirc											
D		\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc		\bigcirc	O*	O*	\bigcirc		\bigcirc
Description														

- When conversion control "EN" =1 or changes from $0 \rightarrow 1$ (P instruction), it will convert the N successive hexadecimal ASCII character (${ }^{\prime} 0^{\prime} \sim^{\prime} 9^{\prime},{ }^{\prime} \mathrm{A}^{\prime} \sim^{\prime} \mathrm{F}^{\prime}$) convey by 16 -bit registers (Low Byte is effective) into hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one register. The nibbles of register, which does not involve in the conversion of ASCII code will remain unchanged.
- The conversion will not be performed when N is 0 or greater than 511.
- When there is ASCII error (neither $30 \mathrm{H} \sim 39 \mathrm{H}$ nor $41 \mathrm{H} \sim 46 \mathrm{H}$), the output "ERR" is ON.
- The main purpose of this command is to convert the ASCII numbers received by communication ports 1~2 from the external ASCII peripherals (transmitting values to the PLC in ASCII codes) into hexadecimal values that can be directly processed by the CPU.

Example2 \quad When M1 is ON, ASCII code converted to hexadecimal value.
When M1 is ON, convert ASCII code to hexadecimal value Convert the ASCII codes of RO and R1 into hexadecimal values and store them in the low bytes of R100 (the high bytes remain unchanged)

$\mathrm{RO}=0039 \mathrm{H}$ (9) Originally $\mathrm{R} 100=0000 \mathrm{H}$ $\mathrm{R} 1=0041 \mathrm{H}(\mathrm{A}) \rightarrow \quad \mathrm{R} 100=009 \mathrm{AH}$

Example3

When M1 is ON, convert ASCII code to hexadecimal value
Convert the ASCII codes of RO~R2 into hexadecimal values and store them in R100 (Nibble 3 remains unchanged)

FUN63 P \rightarrow HEX	CONVERSION OF ASCII CODE TO HEXADECIMAL VALUE	FUN63 P \rightarrow HEX
Example4	When M1 is ON, ASCII code converted to hexadecimal value	
When M1 is ON, convert ASCII code to hexadecimal value Convert the ASCII codes of RO~R5 into hexadecimal values and store them in R100~R101		

7-6-6 CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE (HEX \rightarrow ASCII)

FUN 64 P $\rightarrow \text { ASCII }$	CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE													FUN 64 P $\rightarrow \text { ASCII }$
Symbol														
$\text { Conversion control - EN }\left[\begin{array}{l} \text { Ladder symbol } \\ {\left[\begin{array}{l} \text { 64P. } \rightarrow \text { ASCIII } \\ \mathrm{S}: \\ \mathrm{N}: \\ \mathrm{D}: \\ \mathrm{D}: \\ \hline \end{array}\right]} \end{array}\right]$								S: Starting source register N : Number of hexadecimal digits to be converted to ASCII code. D: The starting register storing result. S, N, D, can associate with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to do the indirect addressing application.						
Range Operand	WX	WY	WM	WS	$\begin{gathered} \mathrm{TM} \\ \mathrm{R} \end{gathered}$	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{array}{\|c} w \times 0 \\ w \times 1 \\ 008 \end{array}$	$\begin{aligned} & W Y 0 \\ & W Y 1 \\ & 008 \end{aligned}$	$\begin{aligned} & \text { WMO } \\ & \text { WM2 } \\ & 9584 \end{aligned}$	WSO WS3 088	$\begin{gathered} \text { T0 } \\ \text { T10 } \\ 23 \end{gathered}$	CO 1 C12 79	RO R34 767	R34 768 R34 895	$\begin{aligned} & \text { R35 } \\ & 024 \\ & \text { R35 } \\ & 151 \end{aligned}$	$\begin{aligned} & \text { R35 } \\ & 280 \\ & \text { R43 } \\ & 223 \end{aligned}$	$\begin{aligned} & R 43 \\ & 224 \\ & R 47 \\ & 319 \end{aligned}$	D0 D11 999		V ${ }^{\text {P }}$ PO~P 9
	\bigcirc		\bigcirc											
N	\bigcirc	1~511	\bigcirc											
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc		\bigcirc	O*	O*	\bigcirc		\bigcirc
Description														
When conversion control "EN" $=1$ or changes from $0 \rightarrow 1$ (P instruction), will convert the N successive nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to low byte (high byte remain unchanged) of the registers which start from D. The conversion will not be performed when the value of N is 0 or greater than 511. The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to ASCII code and transmit to ASCII peripherals by communication port1 or communication port 2.														

FUN 64 \rightarrow ASCII	CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE	FUN 64 叉 \rightarrow ASCII
Example1		

When M1 is from OFF \rightarrow ON, the converted hexadecimal value is ASCII code
Convert the Nibble 0 of RO to ASCII code and store it in R100 (the high byte remains unchanged).

M1
64P. \rightarrow ASCII

- EN S:R0

N: 1
D: R100

Example2 When M1 is ON, it converts hexadecimal value to ASCII code.
When M1 is ON, convert the hexadecimal value to ASCII code Convert NBO~NB1 of RO into ASCII codes and store them in R100~R101 (the high byte remains unchanged).

Example3 When M1 is ON, it converts hexadecimal value to ASCII code.
When M1 is ON, convert the hexadecimal value to ASCII code
Convert NBO~NB2 of RO into ASCII codes and store them in R100~R102

M1	64. SCII
EN	S : R0
	N: 3
	D : R100

$$
\mathrm{RO}=0123 \mathrm{H} \quad \rightarrow \quad \begin{aligned}
& \mathrm{R} 100=0031 \mathrm{H}(1) \\
& \mathrm{R} 101=0032 \mathrm{H}(2) \\
& \mathrm{R} 102=0033 \mathrm{H}(3)
\end{aligned}
$$

FUN 64 P \rightarrow ASCII	CONVERSION OF HEXADECIMAL VALUE TO ASCII CODE	FUN 64 $\rightarrow \text { ASCII }$
Example4	When M1 is ON, it converts hexadecimal value to ASCII code.	
When M1 is Convert NBO	N , convert the hexadecimal value to ASCII code NB5 of RO~R1 to ASCII code and store in R100~R105	

7-7 Flow Control Instructions II (FUN22, FUN65 ~ 71)

7-7-1 Break

FUN22 P BREAK	BREAK FROM FOR AND NEXT LOOP (BREAK)	FUN22 P BREAK
Symbol		

Ladder symbol

Description

- When execution control "EN" = 1 or changes from $0 \rightarrow 1$ (\mathbf{P} instruction), it will terminate the FOR and NEXT program loop.
- The program within the FOR and NEXT loop will be executed N times (N is assigned by FOR instruction) successively, but if it is necessary to terminate the execution loop less than N times, the BREAK instruction is necessary to apply.
- The BREAK instruction must be located within the FOR and NEXT program loop.

Description : The loop count used to execute the FOR and NEXT program loop is assigned by register D10; the program within the FOR and NEXT loop is designed to search the same data storing in D100 from the register table starting at R0. If it finds, the searching loop will be terminated and then it goes to execute the program after the NEXT instruction. If it doesn't find, the searching loop will be executed N times (N is the content of D 10) and then it goes to execute the program after the NEXT instruction. M200 tells the status and D100 is the pointer of searching.

7-7-2 LABEL (LBL)

FUN65 LBL	LABEL		FUN65 LBL
Symbol			
		S: Alphanumeric, 1~6 characters	
Description	※Only supported in the main program and subroutine		

- This instruction is used to make a tag on certain address within a program, to provide a target address for execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to improve the readability and interpretability of the program.
- This instruction serves only as the program address marking to provide the control of procedure flow or for remark. The instruction itself will not perform any actions; whether the program contains this instruction or not, the result of program execution will not be influenced by this instruction.
- The label name can be formed by any 1~6 alphanumeric characters and can't be duplicate in the same program. The following label names are reserved for interrupt function usage. These "reserved words" can't be used for normal program labels.

$\begin{gathered} \text { FUN65 } \\ \text { LBL } \end{gathered}$	LABEL		FUN65 LBL
	Reserved words	Interrupt	
	$\begin{gathered} \text { X0+1~X7+I (INT0~INT7) } \\ \text { X0-I~X7-I (INTO-~INT7-) } \end{gathered}$	Interrupt service program name of external XO~X7	
	HSCOI~HSC7I	Interrupt service routine name ofHSCO ~ HSC7	
	STMOI (1MS), STM1I (1MS), STM2I (1MS), STM3I (1MS), LTMOI (10MS), LTM1I (10MS), LTM2I (10MS), LTM3I (10MS)	$1 \mathrm{mS}, 10 \mathrm{mS}, 2$ kinds of timer interrupt service program name in PLC	
	HSTAI (ATMRI), HSTOI~HST3I	Label for high-speed fixed timer interrupt service routine. In units of 0.1 mS	
	COCPUI, LHMI, RHMOI, RHM1I, RHM2I, RHM3I, RHM4I, RHM5I	Labels for the pulse output command finished interrupt service routine.	
Unless the program you marked is indeed the service program corresponding to the above interrupt, the above name can be used, and it cannot be used elsewhere. Otherwise, when an interrupt occurs, the PLC will execute the general program you marked as an interrupt program, resulting in errors or crash.			

FUN65 LBL	LABEL	FUN65 LBL
Example		

The label of following diagram illustration served only as program remarks (it is not treated as a label for call or jump target). For the application of labeling in jump control, please refer to JMP instruction for explanation. As to the labeling serves as subroutine names, please refer to CALL instruction for details.

7-7-3 JUMP (JMP)

- When jump control "EN" = 1 or changes from $0 \rightarrow 1$ (\mathbf{P} instruction), PLC will jump to the location behind the marked label and continuous to execute the program.
- This instruction is especially suit for the applications where some part of the program will be executed only under certain condition. This can shorter the scan time while not executes the whole program. And also, can use this instruction in the application of multiple coil outputs, the input control is used to select the application of executing a certain program.
- This instruction allows jump backward (i.e., the address of LBL is comes before the address of JMP instruction). However, care should be taken if the jump action causes the scan time exceed the limit set by the watchdog timer, the WDT interrupt will be occurred and stop executing.
- The jump instruction allows only for jumping among main program or jumping among subroutine area, it can't jump across main/subroutine area.

FUN66 P JMP	JUMP		FUN66 P JMP
Example			
In this diagram, when $X 0=1$, the program will jump directly to the LBL position named PATHB and continuing to execute program B. Therefore, it will skip the program A and none of the instructions of program A will be executed. The status of registers and the coils associated with program A will keep unchanged (as if there is no program section A).			

7-7-4 FUNTION BLOCK LABEL

$\begin{array}{c}\text { FUN165 } \\ \text { FLBL }\end{array}$	FUNTION BLOCK LABEL		FUN165
FLBL			

- This command labels a specific address in the program, so the program function block diagram jumps (FJUMP) to the address where the label is located for execution. If there is no need for flow control, such as jumping or calling, it can also be labeled to annotate the program to facilitate program identification or improve readability.
- This instruction is only used as a program address label for process control or annotation. The instruction itself will not perform any action. Whether there is this instruction in the program, the execution result will not be affected by it.
- The label can consist of 1 to 6 non-repeating arbitrary English letters or numbers.

FUN165 FLBL	FUNTION BLOCK LABEL	FUN165
FLBL		

The illustration below is an example of a label only used as a program comment (not called or jumped to this mark). As for applying the label in jump control, please refer to the description of the JMP instruction. Please refer to the order's CALL Description when the label is a subroutine name.

7－7－5 FUNTION BLOCK JUMP

FUN166 P FJMP	FUNTION BLOCK JUMP			FUN166 P FJMP
Symbol				
階梯圆符號				
	FJMP	LLBL	FLBL ：The program label to be jumped	
Discription	※It＇s only supported in the function block diagram．			

－When the function block jump controls＂EN＂$=1$ or from $0 \rightarrow 1$（P command），PLC directly jumps to the position labeled FLBL and continues to execute the program．
－This command is especially suitable for the application that only needs to execute a particular part of the program when a specific situation occurs，and in the application of multiple outputs of the coil and then use the input control to select and execute a particular section of the program－usually not managed to save time．
－This command can jump back（that is，the FLBL address of the jump back is smaller than the address of the FJMP command）．Still，it should be noted that if the leap back causes the scan time to extend beyond the time set by the Watchdog Timer，the PLC will generate WDT Interrupted，stops running，and issues an error signal．
－Function block jump commands are limited to the same function block diagram．

FUN166 FJMP	FUNTION BLOCK JUMP			FUN166 ${ }^{\text {P }}$ FJMP
Example				
In the figure above, when $\mathrm{XO}=1$, the execution will jump directly from where the JMP command is located to the site where the FLBL name is PATHB so that program A is skipped and all instructions in A are not executed. The list related to program A Points or register status remains unchanged (as if there is no A program).				

7-7-6 CALL

- When call control "EN" = 1 or changes from $0 \rightarrow 1$ (\mathbb{P} instruction), PLC will call (perform) the subroutine bear the same label name as the one being called. When execute the subroutine, the program will execute continuous as normal program does but when the program encounters the RTS instruction then the flow of the program will return back to the address immediately after the CALL instruction.
- All the subroutines must end with one "return from subroutine instruction RTS" instruction; otherwise it will cause executing error or CPU shut down. Nevertheless, an RTS instruction can be shared by subroutines (so called as multiple entering subroutines; even though the entry points are different, they have a same returning path) as illustrated in the right diagram subroutine SUB1-3.

FUN67 P CALL	CALL	FUN67 P CALL

When main program called a subroutine, the subroutine also can call the other subroutines (so called the nested subroutines) for up to 32 levels at the most (include the interrupt routine).

1X	$2 X$	$3 X$	4X	5X
CALL SUB1	LBL SUB1	LBL SUB2	LBL SUB3	LBL SUB4
	CALL SUB2	CALL SUB3	CALL SUB4	
	RTS	RTS	RTS	RTS
Main program area		Sub	tine area	

- Interrupt service programs (HSCOI~HSC7I, HSTOI~HST3I, PSOOI~PSO3I, X0+1~X15+1 / INTO~INT15, X0-I~X15-I / INTO-~INT15-, HSTAI / ATMRI, STMOI~STM3I, LTMOI~LTM3I, COCPUI, LHMI, RHMOI~RHM5I) are also a kind of subroutine. It is also placed in sub program area. However, the calling of interrupt service program is triggered off by the signaling of hardware to make the CPU perform the corresponding interrupt service program (which we called as the calling of the interrupt service program). The interrupt service program can also call subroutine or interrupted by other interrupts with higher priority. Since it is also a subroutine (which occupied one level), please refer to RTI instruction for explanation.

7-7-7 RETURN FROM SUBROUTINE (RTS)

$\begin{gathered} \text { FUN68 } \\ \text { RTS } \end{gathered}$	RETURN FROM SUBROUTINE	$\begin{gathered} \text { FUN68 } \\ \text { RTS } \end{gathered}$
Symbol		
	Ladder symbol	
Description		

- This instruction is used to represent the end of a subroutine. Therefore, it can only appear within the subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts. This instruction is self sustain, and is directly connected to the power line.
- When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore, it will return to the address immediately after the CALL instruction, which were previously executed and will continue to execute the program.
- If the above instructions are used in the subroutine and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the DR35361 'Bit9 (System Stack Error) to 1. Therefore, no matter what the flow is going, it must always ensure that any subroutine must be able to execute a matched RTS instruction.
- For the usage of the RTS instruction please refer to instructions for the CALL instruction.

7-7-8 RETURN FROM INTERRUPT (RTI)

$\begin{gathered} \text { FUN69 } \\ \text { RTI } \end{gathered}$	RETURN FROM INTERRUPT	$\begin{gathered} \text { FUN69 } \\ \text { RTI } \end{gathered}$
Symbol		
	Ladder symbol	
Description		

- The function of this instruction is similar to RTS. Nevertheless, RTS is used to end the execution of sub program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation of RTS instruction.
- A RTI instruction can be shared by more than one interrupt service program. The usage is the same as the sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction.
- The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user, and the label name and its call instruction are included in the main program or other sub program. Therefore, when PLC performs the CALL instruction and the input "EN" = 1 or changes from $0 \rightarrow 1$ (\mathbb{P} instruction), the PLC will call (execute) this sub program. For the execution of interrupt service program, it is directly used with hardware signals to interrupt CPU to pause the other less important works, and then to perform the interrupt service program corresponding to the hardware signal (we call it the calling of interrupt service program). In comparing to the call instruction that need to be scanned to execute, the interrupt is a more real time in response to the event of the outside world. In addition, the interrupt service program cannot be called by label name; therefore, we preserve the special "reserved words" label name to correspond to the various interrupts offered by PLC (check FUN65 explanation for details). For example, the reserved word XO+I is assigned to the interrupt occurred at input point XO ; as long as the sub program contains the label of $X 0+I$, when input point $X 0$ interrupt is occurred (XO: Δ), the PLC will pause the other lower priority program and jump to the subroutine address which labeled as $\mathrm{XO}+\mathrm{I}$ to execute the program immediately.

FUN69 RTI	RETURN FROM INTERRUPT	FUN69 RTI
Description		

- If there is an interrupt occurred while CPU is handling the higher priority (such as hardware high speed counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC will not execute the interrupt program for this interrupt until all the higher priority programs were finished.
- If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the RTI instruction will be executed in any interrupt service program.
- For the detailed explanation and example for the usage of interrupts, please refer to Chapter 5 for explanation.

7-7-9 FOR

		FOR											$\begin{aligned} & \text { N70 } \\ & \text { OR } \end{aligned}$
Symbol													
Ladder symbol 70. FOR N							N : Number of times of loop execution						
	$\underset{\substack{\text { wxo } \\ \text { wxioos }}}{\text { WX }}$	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
		$\begin{gathered} \text { wro } \\ \text { wrioos } \end{gathered}$	$\begin{gathered} \text { WMo } \\ \text { Wr295s } \end{gathered}$	$\begin{gathered} \hline \text { wso } \\ \text { wssos8 } \end{gathered}$	$\begin{gathered} \mathrm{To} \\ \text { T1023 } \end{gathered}$	$\begin{gathered} c_{0}^{c} \\ \text { c1279 } \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	R34768 । R34895	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	R35280 \| R43223	$\begin{aligned} & \text { RA3324 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { p11999 } \end{gathered}$	$\begin{gathered} 1 \\ 16888 \\ 168 \end{gathered}$
N	\bigcirc												

Description

- This instruction has no input control, is connected directly to the power line, and cannot be in series with any conditions.
- The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR instruction, it first records the N value after that instruction (loop execution number), then for N times successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and continues executes the instruction immediately after the NEXT instruction.
- The loop can have a nested structure, i.e., the loop includes other loops, like an onion. 1 loop is called a level, and there can be a maximum of 32 levels. The FOR and NEXT instructions must be used in pairs. The first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction and the first NEXT instruction form the loop's innermost level.

$\begin{gathered} \text { FUN70 } \\ \text { FOR } \end{gathered}$	FOR	$\begin{gathered} \text { FUN70 } \\ \text { FOR } \end{gathered}$
Example		

- In the example in the diagram, loop will be executed $4 \times 3 \times 2=24$ times, loop will be executed $3 \times 2=6$ times, and loop will be executed 2 times.
- If there is a FOR instruction and no corresponding NEXT instruction, or the FOR and NEXT instructions in the nested loop have not been used in pairs, or the sequence of FOR and NEXT has been misplaced, then a syntax error will be generated and this program may not be executed.
- Do not use JMP command to jump out of the loop, otherwise the PLC system stack will be destroyed, the program flow will be disordered, and it may cause a serious crash.
- The effective range of N is $1 \sim 16383$ times. Beyond this range PLC will treat it as 1 . Care should be taken, if the amount of N is too large and the loop program is too big, a WDT may occur.

7-7-10 NEXT

FUN71 NEXT	LOOP END	FUN71 NEXT		
Symbol				
Ladder symbol				
Description				

- This instruction and the FOR instruction together form a program loop. The instruction itself has no input control, is connected directly to the power line, and cannot be in series with any conditions.
- When PLC has not yet entered the loop (has not yet executed to the FOR instruction, or has executed but then jumped out), but the NEXT instruction is reached, then PLC will not take any action, just as if this instruction did not exist.
- For the usage of this instruction please refer to the explanations for the FOR instruction on the preceding page.

7-7-11 Ladder Program Block Close-out Function (TXTDF)

FUN199 TXTDF	Ladder Program Block Close-out Function (TXTDF)		FUN199 TXTDF
Symbol			
	Ladder Symbol $\left[\begin{array}{l} \text { 199.TXTDF } \\ \mathrm{LN}: \end{array}\right]$	LN: Text definition description	
LN is available for inputting 1~200 bits			
Description			

- By logging in a special keyword with the ladder FUN199.TXTDF command, you may use the block close-out function. Through such function, you may protect the ladder program in the Block Diagram easily.
- You may import $1 \sim 200$ bits in Parameter LN for describing the text definition. Currently, the following words are retained and you need to prevent these bits from conflicting with each other when using.

FUN199 TXTDF	Ladder Program Block Close-out Function (TXTDF)		FUN199 TXTDF
Reserved words	Description	Notes	
BLOCKS:NAME	Block Diagram starting network commands		
BLOCKS:	Block Diagram starting network commands		
PSW:?	To open Block Diagram, you need to input password.	Effective the Block	
PSWC:***	To open Block Diagram, you need to input password and it will be shown as *.	Effective the Block	
PSW:CLOSE	Such block cannot enter the open state.	Effective the Block	
BLOCKDSP:OPEN	When file is opened, this block enters the display state.	Effective the Block	
BLOCKE:	Block Diagram end network commands.		

Example

Lock-up process
Per the example indicated in the diagram above, after clicking the first line, i.e., the red box, with right key, you may select closing the program block per the figure indicated below:

FUN199 TXTDF	Ladder program block close-out function (TXTDF)	FUN199 TXTDF

Unlock steps:
Assuming PSWC: ${ }^{* * *}$ in the sample program, ${ }^{* * *}$ is set to 123 (displayed as ${ }^{* * *}$ in the Ladder), then right-click on the program, choose to Block open, and then enter the password.
As shown below:

7-7-12 PROGRAM END

END	PROGRAM END		END
Symbol	Ladder symbol		
End control - EN	END		
Description			

- When end control "EN" = 1, this instruction is activated. Immediately end this program scan, all the programs after the END instruction will not be executed. When "EN" $=0$, this instruction is ignored, and programs after the END instruction will continue to be executed as the END instruction is not exist.
- This instruction may be placed more than one point within a program, and its input (end control "EN") controls the end point of program execution. It is especially useful for debugging and for testing.
- It's not necessary to put any END instructions in the main program, CPU will automatically restart to start point when reach the end of main program.

7-8 I/O Instructions (FUN74~86)

7-8-1 IMMEDIATE I/O REFRESH (IMDIO)

- The input/output signal update of the PLC system usually grabs all the input signals at one time before the program is executed, and then starts to scan the program. After all the scans are over, all the output results are sent to the output point at one time. In this way, the input action to the output response is at least there will be one scan time delay (maximum 2 scan times). The method of this instruction is to immediately grab or send the input signal or output signal specified by the Instruction when encountering this Instruction, so that the most immediate and fast input/output response can be obtained.

| FUN74 Р
 IMDIO | FUN74 \mathbf{P}
 IMDIO |
| :---: | :---: | :---: |

- When update control "EN" = 1 or changes from 0 to 1 (\mathbf{P} instruction), update the status of N input points or output points (i.e., $D^{\sim} D+N-1$) starting from input point or output point designated by D.
- The I/O points of the immediate I/O update of the PLC are limited to the I/O points on the host computer. The following table shows the allowable real-time I/O numbers of MA and ME/MS hosts:

Legal ports	MA	$\mathrm{ME} / \mathrm{MS}$
Input	$\mathrm{X} 0 \sim \mathrm{X} 15$	$\mathrm{XO} \sim \mathrm{X} 7$
Output	$\mathrm{Y} 0 \sim \mathrm{Y} 15$	$\mathrm{YO} \sim \mathrm{Y} 15$

- If the range of the real-time I/O ports in the program exceeds the input point or output ports number of the host (for example, $D=X 7, N=9$ in the program, it means that 9 input point signals such as $\mathrm{X} 7^{\sim} \mathrm{X} 15$ should be captured immediately, and assuming that The Model is ME/MS model, the maximum input point is X 7 , obviously X 15 has exceeded the input point number of the host), then the PLC will not be able to run.
- When this instruction is executed, although the PLC will immediately capture or send out the real-time input/output signal, the delay of the hardware or software components on the input point or the action delay of the output point (Action response time of output components such as relays or transistors) still exists, please pay special attention.

7-9 PID Control (FUN38, FUN99)

7-9-1 PID Temperature Control Instruction 2 (TPCTL 2)

- PID temperature control (FUN99) uses the temperature module and the temperature planning form to measure the current external temperature value as a Process Variable (referred to as PV) and the Set Point (Abbreviated as SP) set by the user and programcontrolled variables through the software PID mathematical formula to obtain the appropriate output control value to control the temperature within the temperature range expected by the user.
- Convert the numerical result after PID operation into time-proportional ON/OFF (PWM) output, and control the heating or cooling circuit connected in series with the SSR through the transistor-type contact output so that a very accurate and inexpensive control result can be obtained.
- EN: Execute temperature control when ON, stop when OFF
- UPD: When ON, the parameters will be updated to the specified channel of the module
- A/M: PID manual mode, if enabled, the output will be in manual control mode, and the MOUT value will be automatically copied to MV instead of using the PID calculation result as the output.
- H/C: Perform heating or cooling control

PID control

- The PID control system is independently operated by the modules, and the PLC scan cycle will not be increased due to multiple modules performing PID at the same time.
- Each channel can perform its own PID calculation. The temperature control mode needs to be set to PID control. The temperature control can be performed more efficiently by using the proportional item (P), integral action (I) and differential action (D). Use demand to carry out P, PI, PD, PID control.
- Proportional item, the size of the output volume (MV) will become an output ratio with the error (E) between the measured value (PV) and the set value (SV), and the proportional item will fluctuate greatly when it is set. On the contrary, the fluctuation is small.
- Integral time, increase or decrease the output according to the error (E) between the measured value (PV) and the set value (SV), so as to reduce the steady-state error generated by the P action, the integral time setting; the smaller it is, the greater the fluctuation and the faster the rise, otherwise the smaller and the slower, the range is $0^{\sim} 3600 \mathrm{~s}$, if the integral time is 0 , the integral control will not be performed.

- Derivative time, increase or decrease the output according to the change rate of the error (E) between the measured value (PV) and the set value (SV), even if there is a sudden change due to the influence of noise, or on the control overshoot can return to a stable state in a short time through the derivative action. The smaller the derivative time setting, the smaller the fluctuation and the slower the response, otherwise the larger the faster, the range is $0 \sim 3600$ s. If the derivative time is 0 , the derivative control is not performed.

FUN99P TPCTL2	PID TEMPERATURE CONTROL INSTRUCTION 2	FUN99P TPCTL2

SR Parameter	Word Size	Description
TS	1	Time cycle size, the unit is $0.1 \mathrm{~s}\left(0.1 \mathrm{~s}^{\sim} 30.0 \mathrm{~s}\right)$
SV	2	Set value, the unit is 0.1 degree
DEAD BAND	1	Reach the dead zone near the SV, the range is $0.1 \% \sim 10.0 \%$
DOUT	1	Output points
PERIOD	1	PWM period, the unit is $1 s$
Out mode	1	0, PWM Output 1, else

- PID_Deadband: The setting range is $0 \sim 10.0 \%$ (input range). In PID control, this area is a deviation (E) inactive area. When the , temperature program control value (PV) enters the dead zone at the beginning, it will still be normal. When the PID operation passes through the set value (SV), then the E will be substituted into the formula with 0 , and the normal straight-line PID operation will resume after passing through this area. For example, E in area A in the figure is regarded as 0 .

FUN99P TPCTL2	PID TEMPERATURE CONTROL INSTRUCTION 2	FUN99P TPCTL2

PR	Word Size	Description
Kp	2 (floating point)	Proportional term, real number
Ti	1	Integration time, $0^{\sim} 3600 \mathrm{~s}$
Td	1	Differential time, $0^{\sim} 3600 \mathrm{~s}$
Bias	2 floating point)	Output deviation value, real number
High output limit	2 (floating point)	Output upper limit
Low output limit	2 (floating point)	Output lower limit
PID Method	1	0: Standard PID $1:$ Minimum transcendence method
AT	1	Whether AT is enabled
MAUTO	1	Does MOUT value change with MV

- Kp, Ti, Td: PID parameters, which can be adjusted after specifying or turning on AT automatic generation.
- Bias: The output bias value, the user can use it to increase or decrease the output value, but it will still be limited by the setting of the output range.
- High/Low output limit : Limit the output range, set the upper and lower limits of PID output, if the output lower limit is greater than or equal to the output upper limit, an error alarm will be issued.
- PID Method: Select a suitable PID algorithm
- AT: Whether to enable Autotuning to obtain PID control parameters
- MAUTO: C opy MV value to MOUT

OR	Word Size	Description
MV	2 (floating point)	Output value return
MOUT	2 (floating point)	MV manual output value setting

FUN99P TPCTL2	PID TEMPERATURE CONTROL INSTRUCTION 2			FUN99P TPCTL2
	WR	Word Size	Description	
	PID Operation Status	1	$=0$, Idle $=1$, Working =2, Error =3, AT now	
	AT Working Status	1	$\begin{aligned} & =0, \text { Idle } \\ & =1, \text { Running } \\ & =2, \text { Error } \\ & =3, \text { Finish } \\ & =4, \text { Time out } \end{aligned}$	
	PV	2	Programmed Value Return	

Auto tuning

- This function can automatically calculate the appropriate proportional item (P), integral time (I) and differential time (D) PID parameters according to the control system environment. It can only be used after selecting the PID control mode and starting to perform temperature control.
Temporarily Calculate through several waveforms obtained after ON/OFF control to obtain the best PID parameters. After the end, the parameters are automatically written into the respective memory of the PID and converted to PID control mode for temperature control.

FUN99P TPCTL2	PID TEMPERATURE CONTROL INSTRUCTION 2	FUN99P TPCTL2

- During the period of auto tuning, the output upper limit and output lower limit will be referred to as the reference basis for the output, and the setting of the output period must not be 0 to perform auto tuning.
- If the SV setting exceeds the temperature range value, auto tuning will not be executed.
- If auto tuning has not been completed after 2 hours, an auto tuning timeout error will be issued.
- Channels that are set to off cannot perform the auto tuning function.
- If you change the setting values of SV, dead zone, TC module correction, output upper limit, output period, control mode and closed channel during auto tuning, auto tuning will stop and the error relay will be ON.
- Execution method: Through temperature control instruction
- Ending method: Auto tuning completes the report

7-9-2 General-Purpose PID 2 Instruction

| FUN38 |
| :---: | :---: | :---: |
| PID2 |

- When the control selection " A / M " $=0$, it means the manual control mode, the PID calculation result will not be used, and the manual output value MOUT will be automatically copied to MV.
- When the control selection " $A / M^{\prime \prime}=1$, it means automatic control mode, the $M V$ value is calculated by PID, if MAUTO $=1$, the MV value will be automatically copied to MOUT.
- When the control selection " A / M " $=1$ and the operation direction " D / R " $=1$, the program control is forward PID control; that is, when the error (SP-PVn) is positive, the control output of the PID operation result: The larger the value is; when the error is negative, the control output of the PID calculation result is smaller.
- When the control selection "A / M" $=1$ and the operation direction "D/R" $=0$, the program control is reverse PID control; that is, when the error (SP-PVn) is positive, the control output of the PID operation result: The smaller it is; when the error is negative, the control output of the PID operation result is larger.
- When the program control setting value or parameter setting value is wrong, the PID instruction will not be executed, and the error indicator "ERR"=1 is set.
- If you need to update the parameters, after updating the contents of the relevant registers, turn UPD OFF->ON to update the parameters.

| FUN38 |
| :---: | :---: | :---: |
| PID2 |\quad PID 2 | FUN38 |
| :---: |
| PID2 |

SR Parameter	Word Size	Description
TS	1	Time cycle size, the unit is $0.1 \mathrm{~s}\left(0.1 \mathrm{~s}^{\sim} 30.0 \mathrm{~s}\right)$
SV	2	Set value, the unit is 0.1 degree
DEAD BAND	1	Reach the dead zone near the SV, the range is $0.1 \% \sim 10.0 \%$

- PID_Deadband: The setting range is $0 \sim 10.0 \%$ (input range). In PID control, this area is a deviation (E) inactive area. When the , temperature program control value (PV) enters the dead zone at the beginning, it will still be normal. When the PID operation passes through the set value (SV), then the E will be substituted into the formula with 0 , and the normal straight-line PID operation will resume after passing through this area. For example, E in area A in the figure is regarded as 0 .

- Kp, Ti, Td: PID parameters, which can be adjusted after specifying or turning on AT automatic generation.
- Bias: The output bias value, the user can use it to increase or decrease the output value, but it will still be limited by the setting of the output range.
- High/Low output limit : Limit the output range, set the upper and lower limits of PID output, if the output lower limit is greater than or equal to the output upper limit, an error alarm will be issued.
- PID Method: Select a suitable PID algorithm
- AT: Whether to enable Autotuning to obtain PID control parameters
- MAUTO: C opy MV value to MOUT

OR	Word Size	Description
MV	2 (floating point)	Output value return
MOUT	2 (floating point)	MV manual output value setting

| FUN38 |
| :---: | :---: | :---: |
| PID2 |\quad PID2 | FUN38 |
| :---: |
| PID2 |

SR Parameter	Word Size	Description
TS	1	Time cycle size, the unit is $0.1 \mathrm{~s}\left(0.1 \mathrm{~s}^{\sim} 30.0 \mathrm{~s}\right)$
SV	2	Set value, the unit is 0.1 degree
DEAD BAND	1	Reach the dead zone near the SV, the range is $0.1 \% \sim 10.0 \%$

- PID_Deadband: The setting range is $0 \sim 10.0 \%$ (input range), in the PID control, this zone is a deviation (E) ineffective zone. After the temperature program control value (PV) starting to enter the dead zone, the normal PID operation will continue until the set value (SV) is crossed. At this time, E will be substituted into the calculation formula with 0 , and the normal straight PID operation will resume after crossing this zone, such as the area A in the figure, all E are regarded as 0 .

| FUN38 |
| :---: | :---: | :---: |
| PID2 |\quad PID 2 | FUN38 |
| :---: |
| PID2 |

WR	Word Size	Description
PID Operation Status	1	$\begin{aligned} & =0, \text { Idle } \\ & =1, \text { Working } \\ & =2, \text { Error } \\ & =3, \text { AT now } \end{aligned}$
AT Working Status	1	$=0$, Idle $=1$, Running =2, Error $=3$, Finish =4, Time out
PV	2	Programmed Value Return

OR	Word Size	Description
MV	2 (floating point)	Output value return
MOUT	2 (floating point)	MV manual output value setting

7-10 Cumulateive Timer Instruction (FUN87~89)

7-10-1 ACCUMULATIVE TIMER ($\mathbf{1 0} \mathbf{m s}, 100 \mathrm{~ms}, 1 \mathrm{~s}$)

FUN87 FUN8 FUN8	$\begin{aligned} & \text { T.01S } \\ & 3 \mathrm{~T} .1 \mathrm{~S} \\ & 9 \mathrm{~T} 1 \mathrm{~S} \end{aligned}$	ACCUMULATIVE TIMER (0.01s, $0.1 \mathrm{~s}, 1 \mathrm{~s}$)											FUN87 T.01S FUN88 T.1S FUN89 T1S
Symbol													
$\begin{array}{\|l\|l\|} \hline \text { Ronee } \\ \text { Rend } \\ \text { Rand } \\ \hline \end{array}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
	$\begin{gathered} \boldsymbol{c}_{\text {wxo }} \times 108 \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wroo } \\ \text { wro } \end{gathered}$	$\begin{aligned} & \text { wMo } \\ & \text { wross } \end{aligned}$	$\begin{gathered} \text { wso } \\ \text { wssos } \end{gathered}$	$\begin{aligned} & \mathrm{TO} \\ & \mathrm{~T}_{1202} \end{aligned}$	$\begin{aligned} & \substack{00 \\ c 129} \end{aligned}$	$\begin{gathered} \text { Rop } \\ \text { R34767 } \end{gathered}$	$\begin{gathered} \text { R34768 } \\ \text { \| } \\ \text { R34895 } \end{gathered}$	$\begin{aligned} & \text { R} 35024 \\ & \\ & R 35151 \end{aligned}$	$\begin{gathered} \text { R35280 } \\ \text { । } \\ \text { R43223 } \end{gathered}$	$\begin{aligned} & \mathrm{R} 32324 \\ & \mathrm{RR} 4319 \end{aligned}$	$\begin{gathered} \text { op } \\ \text { p119999 } \end{gathered}$	
CV		\bigcirc	-*	$\bigcirc *$	\bigcirc	\bigcirc							
PV	\bigcirc		\bigcirc										
Description													

FUN87 T.01S	FUN88 T.1S	ACCUMULATIVE TIMER
FUN89 T1S		FUN88 T.1S
	FUN89 T1S	

- The operation for this instruction is the same as that for the basic timer (T0~T1023), except that the basic timer only has a "timing control" input - when its input is 1 it starts timing, and when input is 0 it get clear. Every time the input changes, it starts timing again and is unable to accumulate. Timing with this instruction is only permissible when enable control "EN" = 1 . With this instruction, when timing control "TIM" is 1 , it is the same as a basic timer, but when "TIM" is 0 , it does not clear, but keeps the current value. If the timer need to clear, then change enable control "EN" to 0 . When timing control "TIM" is once again to be 1 , it will continue to accumulate from the previous value when the timer last paused. In addition, this instruction also has two outputs: Time to "TUP" (when time up it is 1 , usually it is 0) and Time not to "NUP" (usually it is 1 , when time is up it is 0). Users can utilize input and output combinations to produce timers with various different functions.

Example 1
ON DELAY DE-ENERGIZING Timer

- This timer's output (YO in this example) is normally not energized. When this timer's input control (XO in this example) is activated (ON), only after delay by 10 sec will output YO become energized (ON).

Example 2
ON DELAY DE-ENERGIZING Timer

- The output YO of this timer is usually energized. When this timer's input control XO is on, only after delay by 10 sec will the output become de-energized (OFF).

Example 3 OFF DELAY ENERGIZING Timer

- This timer's output YO is usually de-energized. When this timer's input control XO is off, only after delay by 10 sec will output YO become energized (ON).

Example 4 OFF DELAY ENERGIZING Timer

- This timer's output $Y O$ is usually energized. When this timer's timing control $X O$ is off, only after delay by 10 sec will output YO become de-energized (OFF).

FUN87 T.01S	FUN87 T.01S	
FUN88 T.1S	ACCUMULATIVE TIMER	FUN88 T.1S
FUN89 T1S		FUN89 T1S

The diagram below shows the relation on input and output for the above 4 kinds of timers.

7-11 Watchdog Timer Instructions (FUN90~91)

7-11-1 Watchdog Timer (WDT)

- When the execution control "EN" $=1$ or from $0 \rightarrow 1$ (P instruction), change the setting time of the monitoring timer to NX10MS. Once set, WATCHDOG TIMER (WDT) will use this as the timing time, if the scan time exceeds the set time, the PLC will stop and not execute.
- The watchdog timer is normally implemented by a hardware one-shot timer (it can not be software, otherwise if CPU fail, the timer becomes ineffective, and safeguards are quite impossible). "One-shot" means that after triggered the timer once, the timing value will immediately be reset to 0 and timing will restart. If WDT has begun timing, and never triggered it again, then the WDT timing value will continue accumulating until it reach the preset value of N , at that time WDT will be activated, and PLC will be shut down. If trigger the WDT once every time before the WDT time N has been reached, then WDT will never be activated. PLC can use this feature to ensure the safety of the system. Each time when PLC enters into system housekeeping after finished the program scanning and I/O refresh, it will usually trigger WDT once, so if the system functions normally and scan time does not exceed WDT time then WDT is never activated. However, if CPU is damaged and unable to trigger WDT, or the scan time is too long, then there will not be enough time to trigger WDT within the period N , WDT will be activated and will shut off PLC.
- Once the set value is set, it will be saved forever, and there is no need to set it once for each scan, so this command should be used practically P instruction.
- The WDT time is set at 0.25 seconds.
- For the working principle of WDT, please refer to the FUN91 (RSWDT) instruction.

7-11-2 RESET WATCHDOG TIMER (RSWDT)

- When the execution control "EN" $=1$ or from $0 \rightarrow 1$ (P instruction), the WDT timer is cleared (that is, the WDT starts counting from 0 again).
- The function of WATCHDOG TIMER has been described in FUN90 (WDT command), and its principle is as follows:
- WATCHDOG TIMER are generally hardware ONE-SHOT timers (you cannot use software to do this, otherwise if the CPU crashes, the timer will be invalid, of course it cannot be protected), the so-called one-shot means That is, as long as you trigger the timer once, the timer value will be cleared to 0 immediately and restarted. If you do not trigger the WDT after it starts timing, the WDT timing will continue to increase to the set value N, and then the WDT will act and stop the PLC. If you trigger the WDT once before the WDT timing N has reached, the WDT will never happen, and the PLC uses this principle to ensure system security, because the PLC generally enters the program scan and I/O update WDT is triggered once during system service (HOUSEKEEPING). If the system is normal and the scan time does not exceed the set time N of WDT, there must be time to clear WDT and make it inactive. However, if the CPU is damaged, WDT cannot be triggered. Or the scan time is too long to trigger the WDT within N time, the WDT will act and turn off the PLC.
- In some applications, you have set the WDT time (FUN90), and your program scans the time in some cases, and it may temporarily exceed the set time of WDT, which is expected and allowed by you. Of course, you don't want the PLC to stop because of this. At this time, you can use this command to trigger WDT to avoid WDT from happening. This is the main purpose of this command.

7-12 High Counting/Timing Instruction (FUN92~93)

7-12-1 Hareware High Speed Counter Current Value Access

	Hareware High Speed Counter Current Value (CV) Access			
Symbol	*When the high-speed counter is used as 32bits, it can only count down, and the PV can only be set to 0 .			
$\text { Readout control-EN }\left\{\begin{array}{l} \text { 92P. - } \\ \text { HSCTF } \end{array}\right.$		mbol CN	CN: Hardware high speed counter number 0 : HSCO 1 : HSC1 2 : HSC2 3 : HSC3 4 : HSC4 5: HSC5 6 : HSC6 7: HSC7	
Description				

- The HSCO ~ HSC3 counters of M-Series PLC are 4 sets of 32 bit high speed counter with the variety counting modes such as up/down pulse. All the 4 high speed counters are built in the ASIC hardware and could perform count, compare, and send interrupt independently without the intervention of the CPU. In contrast to the software high speed counters HSC4 ~ HSC7, which employ interrupt method to request for CPU processing, hence if there are many counting signals or the counting frequency is high, the PLC performance (scanning speed) will be degraded dramatically. Since the current values CV of HSCO ~ HSC3 are built in the internal hardware circuits of ASIC, the user control program (ladder diagram) cannot retrieve them directly from ASIC. Therefore, it must employ this instruction to get the CV value from hardware HSC and put it into the register which control program can access. The following is the arrangement of CV, PV in ASIC and their corresponding CV, PV registers of PLC for HSCO~HSC3.

FUN92DP HSCTR	Hareware High Speed Counter Current Value (CV) Access	FUN92D \mathbf{P} HSCTR

- When access control "EN" =1 or changes from $0 \rightarrow 1$ (P instruction), will gets the CV value of HSC designated by CN from ASIC and puts into the HSC corresponding CV register (i.e. the CV of HSCO will be read and put into DR35280 or the CV of HSC1 will be read and put into DR35284).
- Although the PV within ASIC has a corresponding PV register in CPU, but it is not necessary to access it (actually it can't be) for that the PV value within ASIC comes from the PV register in CPU.
- HSTA is a timer, which use 0.1 ms as its time base. The content of CV represents elapse time counting at 0.1 mS tick.
- For detailed applications, please refer to Chapter 8 "The high speed counter and high speed timer of M-Series PLC".

7-12-2 Hardware High Speed Counter Current Value and Preset Value Writing

FUN93D P HSCTW	Hardware High Speed Counter Current Value and Preset Value Writing		FUN93D \mathbf{P} HSCTW
Symbol	*When the high-speed counter is used as 32 bits, it can only count down, and the		
Write control	$\left.\begin{array}{l} \text { Ladder symbol } \\ \text {-EN }\left[\begin{array}{l} \text { 93DP. HSCTW } \\ \mathrm{S}: \\ \mathrm{CN}: \\ \mathrm{D}: \end{array}\right] \end{array}\right]$	CN: Hardware high speed counter to be written 0 : HSCO 1 : HSC1 2 : HSC2 3 : HSC3 4 : HST4 2 : HSC2 3 : HSC3 4 : HST4 D: Write target (0 represents CV, 1 r epresents PV)	
Description			

FUN93D \mathbf{P}	Hardware High Speed Counter Current Value and Preset Value HSCTW	WUNiting
HSCTW		

- Please refer to FUN92 for the relationship between the CV or PV values of HSCO~HSC7 in the ASIC and the corresponding CV registers and PV registers inside the PLC.
- When the writing control "EN"=1 or from $0 \rightarrow 1$ (P command), write the contents of the CV register or PV register of the high-speed counter designated by the PLC internal CN to the ASIC correspondingly CV or PV of HSC.
- General applications often need to write PV, that is, write your preset set value to the PV in ASIC. When the count value reaches your set value, the counter will immediately send an interrupt. Through the interrupt service program, you It can be used for various precise counting or positioning control.
- M SERIES PLC will automatically read the value of the current value register CV of HSCO~HSC3 inside the ASIC at that time when the power is off, and then write it into the CV register of HSCO~HSC3 inside the PLC (with power-off hold function), and when the PLC is powered on again, it will reversely write the CV registers inside the PLC back to the CV registers inside the ASIC. The content value of the register will automatically return to the value before the last power failure, but if your control application needs to be cleared to 0 or start counting from a specific value when the power is restored, you must use this instruction to do ASIC internal write to the CV value of HSC.
- For detailed applications, please refer Chapter 7 "The high-speed counter and high speed timer of M-Series PLC".

FUN93D \mathbf{P}	Hardware High Speed Counter Current Value and Preset Value HSCTW	WUN93D \boldsymbol{P} HSCTW

As the program in this diagram, when MO changes from $0 \rightarrow 1$, it clears the current value of HSCO to 0 , and writes into ASIC hardware through FUN93.

- When MO is 0 , it reads out the current counting value.
- When M1 changes from $0 \rightarrow 1$, it moves DR500 to DR35282, and writes the preset value into ASIC hardware through FUN93.
- Whenever the current value equals to the DR500, The HSCOI interrupt sub program will be executed.

7-13 Slow Up/Slow Down (FUN95~98)

7-13-1 TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT

FUN98 RAMP2	TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT	FUN98 RAMP2
Symbol		

$\left.$| FUN98
 RAMP2 | TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT |
| :--- | :--- | :--- | | FUN98 |
| :--- |
| RAMP2 | \right\rvert\,

- When execution "EN" $=0$, current output value (Rc) will be 0 immediately; the output indicators $\mathrm{ACC}=0$ and $\mathrm{DEC}=0$.
- When execution "EN" =1, this instruction being executed; it will output current value (Rc) first, and then compare the target output value (Rt) with current output value (Rc) every scan; if the target output value is greater than current output value, the current output will be increased according to the rate, which is decided by the settings of acceleration time (Ta) and maximum output (Om), till current output value is equal to the target output value (ACC=1 during this time); if the target output value is less than current output value, the current output will be decreased according to the rate, which is decided by the settings of deceleration time (Td) and maximum output (Om), till current output value is equal to the target output value (DEC=1 during this time).
- If the setting value of target output (Rt) is greater than maximum output (Om), the output value will be clamped by the maximum value.
- It can have smooth activity for acceleration and deceleration control via the execution of this instruction by using current output value (Rc) for analog output (R35024~R35151).。
- The setting value of target output (Rt) needs to stay two scan times at least for proper operation.
- It needs 4 registers for working, they can not be repeated in use.
- This instruction is for positive value operation, but it also can have negative output by short and easy application program for help. Please see example 2.

D10: Setting of maximum output, it is 16383
DO: The acceleration time for the output from 0 up to maximum, it is 30000 mS
D1: The deceleration time for the output from maximum down to 0 , it is 20000 mS
D100: Setting of target output value, it is 8192
R35024: Register of current output, it is used for D/A output
D1000~D1003: Working registers
Description:
When $\mathrm{MO}=0$, current output value is 0 immediately (No ramp). When $\mathrm{MO}=1$, it will output the value of R35024 first; and then compare the target output value (D100) with current output value (R35024) every scan; if D100 > R35024, the current output value of R35024 will be increased according to the rate of 16383/30000 ($\mathrm{Om}=16383$, $\mathrm{Ta}=30000$), till R35024=D100 ($\mathrm{ACC}=1$ during this time); if D100 < R35024, the current output value of R3904 will be decreased according to the rate of $16383 / 20000(O m=16383, T d=20000)$, till R35024=D100 (DEC=1 during this time).

FUN98 RAMP2	TRACKING TYPE RAMP FUNCTION FOR D/A OUTPUT	FUN98 RAMP2

Description:

Description: When $\mathrm{MO}=0$, current output value is 0 immediately (No ramp).
When $M 0=1$, it will output the value of D200 first; and then compare the target output value (D100) with current output value (D200) every scan; if D100 > D200, the current output value of D200 will be increased according to the rate of 8191/20000 ($O m=8191, T a=20000$), till D200=D100 (ACC=1 during this time); if D100 < D200, the current output value of D200 will be decreased according to the rate of $8191 / 10000(O m=8191, T d=10000)$, till D200=D100 ($D E C=1$ during this time).
M100=1, positive output control; M101=1, negative output control.
The target output (D100) is always positive value from 0~65535.

Table Instructions

100. $\mathrm{R} \rightarrow \mathrm{T}$	107. T_FIL
101. $\mathrm{T} \rightarrow \mathrm{R}$	108. T_SHF
102. T \rightarrow T	109. T_ROT
103. BT_M	110. QUEUE
104. T_SWP	111. STACK
105. R-T_S	112. BKCMP
106. T-T_C	

- A table consists of 2 or more consecutive registers (16 or 32 bits). The number of registers that comprise the table is called the table length (L). The operation object of the table instructions always takes the register as unit (i.e. 16 or 32 bit data).
- The operation of table instructions are used mostly for data processing such as move, copy, compare, search etc, between tables and registers, or between tables. These instructions are convenient for application.
- Among the table instructions, most instructions use a pointer to specify which register within a table will be the target of operation. The pointer for both 16 and 32 -bit table instructions will always be a 16-bit register. The effective range of the pointer is 0 to L-1, which corresponds to registers T0 to TL-1 (a total of L registers). The table shown below is a schematic diagram for 16bit and 32-bit tables.
- Among the table operations, shift left/right, rotate left/right operations include a movement direction. The direction toward the higher register is called left, while the direction toward the lower register is called right, as shown in the diagram below.

7-14 Table Instruction (FUN100~114)

7-14-1 REGISTER TO TABLE MOVE

FUN100 DP $R \rightarrow T$	REGISTER TO TABLE MOVE											$\underset{R \rightarrow T}{N 100 \text { DP }}$
Symbol												
Description												
When move control "EN" = 1 or transition from 0 to 1 (P instruction), the contents of the source register Rs will be written onto the register Tdpr indicated by the pointer Pr within the destination table Td (length is L). Before executing, this instruction will first check the pointer clear "CLR" input signal. If "CLR" is 1 , it will first clear the pointer Pr , and then carry out the move operation. After the move has been completed, it will then check the Pr value. If the Pr value has already reached L-1 (point to the last register in the table) then it will only set the move-to-end flag "END" to 1 , and finish execution of this instruction. If the Pr value is less than L-1, then it must again check the pointer increment "INC" input signal. If "INC" is 1 , then Pr value will be also increased. Besides, pointer clear "CLR" is able to operate independently, without being influenced by other input.												

FUN100 DP $R \rightarrow T$	REGISTER TO TABLE MOVE	FUN100 DP $R \rightarrow T$
- The effective range of the pointer is 0 to L-1. Beyond this range, the pointer		
error "ERR" will be set to 1, and this instruction will not be performed.		

7-14-2 TABLE TO REGISTER MOVE

FUN101 DP $\mathrm{T} \rightarrow \mathrm{R}$	TABLE TO REGISTER MOVE											FUN101 DP$\mathrm{T} \rightarrow \mathrm{R}$	
Symbol													
Description													

- When move control "EN" = 1 or transition from 0 to 1 (P instruction), the value of the register Tspr specified by pointer Pr within source table Ts (length is L) will be written into the destination register Rd. Before executing, this instruction will first check the input signal of pointer clear "CLR". If "CLR" is 1 , it will first clear Pr and then carry out the move operation. After completing the move operation, it will then check the value of Pr. If the Pr value has already reached L-1 (point to the last register in the table), then it sets the move-to-end flag to 1 , and finishes executing of this instruction. If Pr is less than $\mathrm{L}-1$, it check the status of "INC". If "INC" is 1, then it will increase Pr and finish the execution of this instruction. Besides, pointer clear "CLR" can execute independently and is not influenced by other inputs.

FUN101 $T \rightarrow R$	TABLE TO REGISTER MOVE					$\begin{gathered} \text { FUN101 DP } \\ T \rightarrow R \end{gathered}$
The effective range of the pointer is 0 to $\mathrm{L}-1$. Beyond this range the pointer error "ERR" will be set to 1 and this instruction will not be carried out.						
Example						
- In the example at left, at the very beginning $\operatorname{Pr}=7$ and Ts and Rd are as shown at left in the diagram below. When X0 have a transition from $0 \rightarrow 1$ twice, the results are shown at right in the diagram below. - At the second time execution, the pointer has already reached to the end so there						

7-14-3 TABLE TO TABLE MOVE

7-14-4 BLOCK TABLE MOVE (BT_M)

FUN103 BT	$\begin{aligned} & 03 \text { DP } \\ & \text { BM } \end{aligned}$	BLOCK TABLE MOVE											$\begin{array}{r} \text { FUN1 } \\ \text { BT } \end{array}$	$3 \text { D P }$ M
Symbol														
Move control-EN $\begin{aligned} & \text { Ladder symbol } \\ & \text { [103DP.BT_M } \\ & \text { Ts : } \\ & \text { Td : } \\ & \text { L : }\end{aligned}$							Ts : Starting register for source table Td : Starting register for destination table L : Lengths of source and destination tables Ts , Td may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to serve indirect							
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxxiog } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wryo } \end{gathered}$		$\begin{gathered} \substack{\text { wso } \\ \text { wsose }} \end{gathered}$	$\begin{gathered} \text { T0 } \\ \text { T103 } \end{gathered}$	$\begin{gathered} c 0 \\ c \end{gathered}$	$\begin{gathered} \text { Ró } \\ \text { R34767 } \end{gathered}$	R34768 । R34895	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{aligned} & \text { Re3s20 } \\ & \text { Rata323 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Ra3224 } \\ \text { Re47319 } \end{array}$	$\begin{gathered} \text { op } \\ \text { 0119999 } \end{gathered}$	$\begin{aligned} & 21 \\ & 236 \\ & 236 \end{aligned}$	XR v/z pope
Ts	\bigcirc		\bigcirc											
Td		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
L							\bigcirc				○*	\bigcirc	\bigcirc	
Description														

- In this instruction the source table and destination table are the same length. When this instruction was executed all the data in the Ts table is completely copied to Td. No pointer is involved in this instruction.
- When move control "EN" = 1 or have a transition from 0 to 1 (\mathbf{P} instruction), all the data from source table Ts (length L) is copied to the destination table Td, which is the same length.
- One table is completely copied every time this instruction is executed, so if the table length is long, it will be very time consuming. In practice, \mathbb{P} instruction should be used to avoid time waste caused by each scan repeating the same movement action.

$\begin{gathered} \text { FUN103 DP } \\ \text { BT_M } \end{gathered}$	BLOCK TABLE MOVE		FUN103 D P BT_M
Example			
x0			
11			
		Td:	R10
			10

The program example in the above figure assumes that the state of the TS and TD lists is as shown in the left figure before execution. When XO changes from 0 to 1 , the execution result as shown in the right figure below can be obtained:

	Ts
RO	0000
R1	1111
R2	2222
R3	3333
R4	4444
R5	5555
R6	6666
R7	7777
R8	8888
R9	9999

	Td
R	0000

	Td
R10	0000
R11	1111
R12	2222
R13	3333
R14	4444
R15	5555
R16	6666
R17	7777
R18	8888
R19	9999

After

Before

7-14-5 REGISTER TO TABLE SEARCH

FUN105 DP R-T_S		REGISTER TO TABLE SEARCH											FUN105R-T_S	
Symbol														
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{aligned} & \text { WX0 } \\ & \text { wX1 } \\ & 008 \end{aligned}$	$\begin{aligned} & W Y 0 \\ & W Y 1 \\ & 008 \end{aligned}$	WM 0 WM 2958	$\begin{aligned} & \text { WSO } \\ & \text { WS3 } \\ & 088 \end{aligned}$	$\begin{gathered} \mathrm{TO} \\ \mathrm{~T} 102 \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 127 \\ 9 \end{gathered}$	$\begin{array}{r} \text { RO } \\ \text { R347 } \\ 67 \end{array}$	$\begin{gathered} \text { R347 } \\ 68 \\ \text { R348 } \\ 95 \end{gathered}$	$\begin{array}{r} R 350 \\ 24 \\ R 351 \\ 51 \end{array}$	$\begin{array}{r} R 352 \\ 80 \\ R 432 \\ 23 \end{array}$	$\begin{gathered} \mathrm{R} 432 \\ 24 \\ \mathrm{R} 473 \\ 19 \end{gathered}$	$\begin{gathered} \text { D0 } \\ \text { D11 } \\ 999 \end{gathered}$	$\begin{gathered} 16 / 3 \\ 2-b i t \\ +/- \\ \text { num } \\ \text { ber } \end{gathered}$	$\begin{gathered} V \cdot Z \\ P O_{9}^{\sim} P \end{gathered}$
Rs	\bigcirc													
Ts	\bigcirc		\bigcirc											
L							\bigcirc				〇*	\bigcirc	2~25	
Pr		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	○*	$)^{*}$	\bigcirc		

| FUN105 DP |
| :--- | :--- |
| R-T_S |

7-14-6 TABLE TO TABLE COMPARE

7-14-7 TABLE FILL (T_FIL)

FUN107 D P T_FIL	TABLE FILL		FUN107 D P T_FIL
Symbol			
Ladder symbol Fill control-EN $\left[\begin{array}{ll}\text { 107DP.T_FIL } \\ \text { Rs } & : \\ \text { Td } & : \\ \text { L } & : \\ \hline\end{array}\right]$		Rs : Source data to fill, can be a constant or a register Td : Starting register of destination table L :Table length Rs, Td may combine with V, Z, PO~P9 to serve indirect address application	

	wx	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	wxo ।	$\underset{\substack{\text { wro } \\ \text { whon }}}{ }$	$\begin{gathered} \text { WMO } \\ \text { । } \\ \text { WY29584 } \end{gathered}$	wso	$\begin{gathered} \text { To } \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c \\ \substack{c \\ c \\ 129} \end{gathered}$	$\begin{gathered} \text { Ro } \\ \text { R39767 } \end{gathered}$	R34768 । R34895	R35024 ।		R43224 । R47319	${ }^{\text {Do }}$	16/32-bit	
Rs	\bigcirc													
Td		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc		\bigcirc
L							\bigcirc				$\bigcirc *$	\bigcirc	2-256	

Description

- When fill control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), the Rs data will be filled into all the registers of the table Td.
- This instruction is mainly used for clearing the table (fill 0) or unifying the table (filling in the same values). It should be used with the P instruction.

| FUN107 DP
 T_FIL | TABLE FILL | |
| :---: | :---: | :---: | :---: |
| Example | | |

- This instruction will fill 5555 into the whole table Td. The results are as shown in the diagram below.

7-14-8 TABLE SHIFT

FUN108 DP T_SHF	TABLE SHIFT		FUN108 DP T_SHF
Symbol			
		IW: Data to fill the room after shift operation, can be a constant or a register Ts: Source table Td: Destination table storing shift results L: Lengths of tables Ts and Td OW: Register to accept the shifted-out data Ts, Td may combine with V, Z, PO~P9 to serve indirect address application	

- When shift control "EN" = 1 or has a transition from 0 to 1 (P instruction), all the data from table Ts will be taken out and shifted one position to the left (when "L/R" =1) or to the right ($w h e n$ " L / R " $=0$). The room created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted out will be written into OW.

7-14-9 TABLE ROTATE

- Queue is also a kind of table. It is different from ordinary table in that its queue register numbers go from 1 to L and not from 0 to $L-1$. In other words, QU1~QUL respectively correspond to pointers $\operatorname{Pr}=1$ to L , and $\operatorname{Pr}=0$ is used to show that the queue is empty.
Note: The system uses the serial number L+1 register for internal calculations, users must avoid this register
- Queue is a first in first out (FIFO) device, i.e. - the data that first pushed into the queue will be the first to pop out from the queue. A queue is comprised of L consecutive 16 or 32 bit registers (D instruction) starting from the QU register.

- When execution control "EN" = 1 or has a transition from 0 to 1 (P instruction), the status of in/out control "I/O" determines whether the IW data will be pushed into the queue (when " I / O " $=1$) or be popped out and transferred to $O W$ (when "I/O" = 0). As shown in the diagram above, the IW data will always be pushed into the first (QU1) register of the queue. After it has been pushed in, Pr will immediately be increased by 1 , so that the pointer can always point to the first data that was pushed into the queue. When it is popped out, the data pointed by Pr will be transferred directly to OW. Pr will be reduced by 1 , so that it still point to the first data remained in the queue.
- If no data has yet been pushed into the queue or the pushed in data has already been popped out ($\operatorname{Pr}=0$), then the queue empty flag will be set to 1 . In this case, even if there is further popping out action, this instruction will not be executed. If data is only pushed in and not popped out, or pushed in is more than that popped out, then the queue finally becomes full (pointer Pr indicates the QUL position), and the queue full flag is changed to 1 . In this case, if there is more pushing in action, this instruction will not execute. The pointer for this instruction is used during access of the queue, to indicate the data that was pushed in the earliest. Other programs should not be allowed to change it, or else an operation error will be created. If there is a specific application, which requires the setting of a Pr value, then its permissible range is 0 to L (0 means empty, and 1 to L respectively correspond to QU1 to QUL). Beyond this range, the pointer error flag "ERR" will be set as 1, and this instruction will not be carried out.

- The program above assumes the queue content is the same with the queue at preceding page. It will first perform queue push operation, and then perform pop out action. The results are shown below. Under any circumstance, Pr always point to the first (oldest) data that was remained in queue.

7-14-11 STACK

Description

- Like queue, stack is also a kind of table. The nature of its pointer is exactly the same as with queue, i.e. $\operatorname{Pr}=1$ to L , which corresponds to ST 1 to STL , and when $\mathrm{Pr}=0$ the stack is empty.
- Stack is the opposite of queue, being a last in first out (LIFO) device. This means that the data that was most recently pushed into the stack will be the first to be popped out of the stack. The stack is comprised of L consecutive 16 or 32-bit (D instruction) registers starting from ST, as shown in the following diagram:

FUN111 DP STACK	STACK	FUN111 DP STACK

- When execution control "EN" = 1 or has a transition from 0 to 1 (P instruction), the status of in/out control "I/O" determines whether the IW data will be pushed into the stack (when " $/ / O=1$), or the data pointed by Pr within the stack (the data most recently pushed into the stack) will be moved out and transferred to OW (when "I/O" $=0$). Note that the data pushed in is stacking, so before pushed in, Pr will increased by 1 to point to the top of the stack then the data will be pushed in. When it is popped out, the data pointed by pointer Pr (the most recently pushed in data) will be transferred to OW. After then Pr will decreased by 1. Under any circumstances, the pointer Pr will always point to the data that was pushed into the stack most recently.
- When no data has yet been pushed into the stack or the pushed in data has already been popped out ($\mathrm{Pr}=0$), the stack empty flag "EPT" will set to 1 . In this case any further pop up actions, will be ignored. If more data is pushed than popped out, sooner or latter the stack will be full (pointer Pr points to STL position), and the stack full flag "FUL" will set to 1 . In this case any further push actions, will be ignored. As with queue, the stack pointer in normal case should not be changed by other instructions. If there is a special application which requires to set the Pr value, then its effective range is 0 to $\mathrm{L}(0$ means empty, 1 to L respectively correspond to ST1 to STL). Beyond this range, the pointer error flag "ERR" will set to 1 , and the instruction will not be carried out.

FUN111 DP STACK	STACK		FUN111 D P STACK	
Example				
$1_{1}^{x 0}$		IW: 111. RTACK $_{\text {RO }}$ EPT-		
Cl^{x}		ST:	R2	FUL-
		Pr: ow:	$\begin{aligned} & \text { R1 } \\ & \text { R20 } \end{aligned}$	-ERR-
.				

- The program above assumes that the initial content of the stack is just as in the diagram of a stack on the preceding page. The operation illustrated in this example is to push a data and than pop it from stack. The results are shown below. Under any circumstances, Pr always point to the data that was most recently pushed into the stack.

	Pr		
	5	R1	
	ST		
ST1	1111	R2	
ST2	2222	R3	
ST3	3333	R4	
ST4	4444	R5	OW
ST5	5555	R6	XXX ${ }_{\text {R2 }}$
ST6		R7	\uparrow
ST7		R8	OW unchanged
ST8		R9	
ST9		R1	
S_{S} T1		$\hat{1}_{\text {R1 }}$	

$$
\text { After push(X1=1, XO from } 0 \rightarrow 1)
$$

After $\operatorname{pop}(X 1=0, X 0$ from $0 \rightarrow 1)$

7-14-12 BLOCK COMPARE (DRUM)

FUN1 BKC	$12 \mathrm{D}$ EMP		BLOCK COMPARE (DRUM)												FUN112 DP BKCMP	
Sym	bol															
	Y	M	S	$\begin{gathered} w x \\ \hline w x \\ w^{w x} \\ 100 \\ 10 \end{gathered}$	WY	WM	WS	TMR	$\begin{gathered} \mathrm{CT} \\ \hline \mathrm{CO} \\ \mathrm{c} 1 \\ 279 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AR } \\ \hline \text { RO } \\ \text { R3 } \\ 476 \\ \hline 7 \end{array}$	$\begin{array}{\|c\|} \hline \text { IR } \\ \hline \text { R347 } \\ 68 \\ \text { R348 } \\ \hline 95 \\ \hline \end{array}$	OR	SR	ROR	DR	$\begin{gathered} \mathrm{K} \\ \hline \begin{array}{c} 16 / 32 \\ -\mathrm{bjt} \\ +\mathrm{j} \\ \text { numb } \\ \mathrm{er} \end{array} \\ \hline \end{gathered}$
	$\begin{array}{r} Y 0 \\ \text { Y10 } \\ 23 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { M0 } \\ \text { M19 } \\ 583 \\ \hline \end{array}$	$\begin{gathered} \text { s0 } \\ \text { s31 } \\ 03 \end{gathered}$		$\begin{aligned} & W Y 0 \\ & W Y 1 \\ & 008 \end{aligned}$	$\begin{aligned} & \text { WMO } \\ & \text { WM2 } \\ & 9584 \end{aligned}$	$\begin{gathered} \text { Wso } \\ \text { ws3 } \\ 088 \end{gathered}$	$\left\|\begin{array}{c} \mathrm{T} 0 \\ \mathrm{~T} 102 \\ 3 \end{array}\right\|$				$\begin{gathered} \text { R350 } \\ 24 \\ \text { R351 } \\ 51 \end{gathered}$	$\begin{array}{r} R 352 \\ 80 \\ R 432 \\ 23 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{R} 432 \\ 24 \\ \mathrm{R} 473 \\ 19 \end{array}$	$\begin{array}{l\|l} 2 & \text { D0 } \\ 3 & \text { D11 } \\ \hline 999 \end{array}$	
Rs				\bigcirc												
Ts				\bigcirc												
L										\bigcirc				○*	\bigcirc	$\underset{6}{1 \sim 25}$
D	\bigcirc	\bigcirc	0													
Description																

- When comparison control "EN" = 1 or has a transition from 0 to 1(P instruction), comparisons will be perform one by one between the contents of Rs and the upper and lower limits form by L pairs of 16 or 32-bit (D modifier) registers starting from the Ts register (starting from T0 each adjoining 2 register units form a pair of upper and lower limits). If the value of Rs falls within the range of the pair, then the bit within the comparison results relay D which corresponds to that pair will be set to 1 . Otherwise it will be set as 0 until comparison of all the L pairs of upper and lower limits is completed.
- When M9160=0, if there is any pair where the upper limit value is less than the lower limit value, then the limit error flag "ERR" will be set to 1, and the comparison output for that pair will be 0 .
- When $\mathrm{M} 9160=1$, there is no restriction on the relation of upper limit and lower limit, this can apply for 360° rotary electronic drum switch application.

- Actually, this instruction is a drum switch, which can be used in interrupt program and when incorporate with immediate I/O instruction (IMDIO) can achieve an accurate electronic drum.

X0	112.BKCMP
- EN	$$
X1	
$\text { - } \mathrm{CO}_{\mathrm{CO}} \mathrm{PSU}$	$\begin{array}{ll} \text { C } & 0 \\ \text { PV : } & 360 \end{array}$
- CLR	

- In this program, CO represents the rotation angle (Rs) of a drum shaft. The block compare instruction performs a comparison between Rs and the 4 pairs ($L=4$) of upper and lower limits, R10,R11, R12,R13, R14,R15 and R16,R17. The comparison results can be obtained from the four drum output points Y 5 to Y 8 .
- The input point X1 is a rotation angle detector mounted on the drum shaft. With each one degree rotation of the drum shaft angle, X1 produces a pulse. When the drum shaft rotates a full cycle, X1 produces 360 pulses.

7-14-13 DATA SORTING (SORTING)

- When sort control "EN" = 1 or has a transition from 0 to 1 (P instruction), will sort the registers with ascending order (if $A / D=1$) or descending order (if $A / D=0$) and put the sorted result to the registers starting by D register.
- The valid data length of sort operation is between 2 and 127, other length will set the "ERR" to 1 and the sort operation will not perform.

Example
 at R10~R19.

7-14-14 ZONE WRITE

Description

- When operation control "EN"=1 or changes from $0 \rightarrow 1$ (P instruction), it will perform the write operation according to the input status of write selection, the specified area of registers or bits will all be reset to $0(" 1 / 0 "=0)$ or set to $1(" 1 / 0 "=1)$.
- The valid data length of sort operation is between 0 and 511 , other length will set the "ERR" to 1 and the sort operation will not perform.

Example 1
Registers $R 0^{\sim} R 9$ will be reset to 0 while $X 0=1$

Matrix Instructions

120. MAND	126. MBRD
121. MOR	127. MBWR
122. MXOR	128. MBSHF
123. MXNR	129. MBROT
124. MINV	130. MBCNT
125. MCMP	

- A matrix is comprised of 2 or more consecutive 16-bit registers. The number of registers comprising the matrix is called the matrix length (L). One matrix altogether has $\mathrm{L} \times 16$ bits (points), and the basic unit of the object for each operation is bit.
- The matrix instructions treats the $16 \times \mathrm{L}$ matrix bits as a set of series points(denoted by M0 to M16L-1). Whether the matrix is formed by register or not, the operation object is the bit not numerical value.
- Matrix instructions are used mostly for discrete status processing such as moving, copying, comparing, searching, etc, of single point to multipoint (matrix), or multipoint-to-multipoint. These instructions are convenient, important for application.
- Among the matrix instructions, most instruction need to use a 16 -bit register as a pointer to points a specific point within the matrix. This register is known as the matrix pointer (Pr). Its effective range is 0 to $16 \mathrm{~L}-1$, which corresponds respectively to the bits M 0 to M16L-1 within the matrix.
- Among the matrix operations, there are shift left/right, rotate left/right operations. We define the movement toward higher bit is left direction, while the movement toward lower bit is right direction, as shown in the diagram below.

7-15 Matrix Instruction (FUN120~130)

7-15-1 MATRIX AND

- When operation control "EN" = 1 or has a transition from 0 to 1 (P instruction), this instruction will perform a logic AND (only if 2 bits are 1 will the result be 1 , otherwise it will be 0)operation between two source matrixes with a length of L, Ma and Mb . The result will then be stored in the destination matrix Md, which is also the same length (the AND operation is done by bits with the same bit numbers). For example, if $\mathrm{MaO}=0, \mathrm{MbO}=1$, then $\mathrm{Md0}=0$; if $\mathrm{Ma} 1=1, \mathrm{Mb1}=1$, then $\mathrm{Md1}=1$; etc, right up until AND reaches Ma16L-1 and Mb16L-1.

7-15-2 MATRIX OR

- When operation control "EN" = 1 or has a transition from 0 to 1 (P instruction), this instruction will perform a logic OR(If any 2 of the bits are 1, then the result will be 1 , and only if both are 0 will the result be 0) operation between 2 source matrixes with a length of L, Ma and Mb . The result will then be stored in the destination matrix Md , which is also the same length (the OR operation is done by bits with the same bit numbers). For example, if $\mathrm{MaO}=0, \mathrm{MbO}=1$, then $\mathrm{Md0}=1$; if $\mathrm{Ma} 1=0, \mathrm{Mb} 1=0$, then $\mathrm{Md1}=0$; etc, right up until OR reaches Ma16L-1 and Mb16L-1.

FUN121 P MOR	MATRIX OR				FUN121 P MOR
Example					
- X0 EN $\left[\begin{array}{ll}\text { 121P.MOR } \\ M a: R & 0 \\ M b: R & 10 \\ M d: R & 20 \\ L & :\end{array} \quad 5\right.$ - In the program at left, when X0 goes from $0 \rightarrow 1$, then matrix Ma, comprised by RO to R4, and matrix Mb, comprised by R10 to R14, will do an OR operation. The results will then be stored into the destination matrix Md, comprised by R10 to R14. In this example, Mb and Md is the same matrix, so after operation					
Ma79	Ma64	Mb79	Mb64	Md79	Md64
	Before execution After execution				

7-15-3 MATRIX EXCLUSIVE OR

- When operation control "EN" $=1$ or has a transition from 0 to 1 (P instruction), this instruction will performs a logic XOR (if the 2 bits are different, then the result will be 1, otherwise it will be 0)between 2 source matrixes with a length of L, $M a$ and $M b$. The result will then be stored back into the destination matrix Md, which also has a length of L. For example the XOR operation is done by bits with the same bit numbers - for example, if MaO $=0, \mathrm{Mb0}=1$, then $\mathrm{Md0}=1$; if $\mathrm{Ma} 1=1, \mathrm{Mb1}=1$, then $\mathrm{Md} 1=0$; etc, right up until XOR reaches Ma16L-1 and Mb16L-1.

FUN122 P MXOR	MATRIX EXCLUSIVE OR				FUN122 P MXOR
Example					
- In the program at left, when XO goes from $0 \rightarrow 1$, will perform a XOR operation between matrix Ma, comprised by RO to R4, and matrix Mb, comprised by R10 to R14. The results will then be stored in destination matrix Md, comprised by R20 to R24. The results are shown at right in the diagram below.					
Ma79	Ma64	Mb79	Mb64	Md79	Md64
Before Execution After Execution					

7-15-4 MATRIX ENCLUSIVE OR

FUN123 MXNR		MATRIX EXCLUSIVE NOR											FUN123 P MXNR	
Symbol														
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{aligned} & w \times 0 \\ & w \times 1 \\ & 008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WYo } \\ & \text { WY1 } \\ & 008 \\ & \hline \end{aligned}$	$\begin{gathered} \text { WM } \\ 0 \\ \text { WM } \\ 2958 \\ 4 \end{gathered}$	$\begin{gathered} \text { Wso } \\ \text { Ws3 } \\ 088 \end{gathered}$	$\begin{array}{\|c} \mathrm{TO} \\ \mathrm{~T} 102 \\ 3 \end{array}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{C} 127 \end{gathered}$	$\begin{array}{\|c} \mathrm{RO} \\ \text { R347 } \\ 67 \end{array}$	$\begin{gathered} \text { R347 } \\ 68 \\ \text { R348 } \\ 95 \end{gathered}$	$\begin{gathered} \text { R350 } \\ 24 \\ \text { R351 } \\ 51 \end{gathered}$	$\begin{gathered} R 352 \\ 80 \\ R 432 \\ 23 \end{gathered}$	$\begin{gathered} \mathrm{R} 432 \\ 24 \\ \mathrm{R} 473 \\ 19 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { D0 } \\ \text { D11 } \\ 999 \end{array}$	2 25	V, $\begin{gathered}\text { V } \\ \text { PO~P } \\ 9\end{gathered}$
Ma	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0
Mb	O	\bigcirc	0	\bigcirc	O		O							
Md		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	O*	○*	\bigcirc		\bigcirc
L							\bigcirc				○*	\bigcirc	\bigcirc	
Description														

- When operation control "EN" = 1 or has a transition from 0 to 1 (\mathbf{P} instruction), will perform a logic XNR operation (if the 2 bits are the same, then the result will be 1 , otherwise it will be 0) between 2 source matrixes with a length of $L, M a$ and $M b$. The results will then be stored into the destination matrix Md, which also has the same length (the XNR operation is done by bits with the same bit numbers). For example, if $\mathrm{MaO}=$ $0, \mathrm{Mb0}=1$, then $\mathrm{MdO}=1$; if $\mathrm{Ma} 1=1, \mathrm{Mb1}=1$, then $\mathrm{Md} 1=0$; etc, right up until XNR reaches Ma16L-1 and Mb16L-1.

7-15-5 MATRIX INVERSE

- When operation control "EN" = 1 or has a transition from 0 to 1 (P instruction), source register Ms , which has a length of L , will be completely inverted (all the bits with a value of 1 will change to 0 , and all those with a value of 0 will change to 1). The results will then be stored into destination matrix Md.

FUN124 P MINV	MATRIX INVERSE			FUN124 P MINV
Exaxmple				
- In the program at left, when XO goes from $0 \rightarrow 1$, the matrix comprised by R0 to R4 will be inverted, and then store back into itself (because in this example Ms and Md are the same matrix). The results obtained are shown at right in the diagram below.				
	Ma79 Maft	MA79 MAG4		
	Before Execution After Execution			

7-15-6 MATRIX BIT SHIFT

- When shift control "EN" = 1 or has a transition from 0 to 1 (P instruction), source matrix Ms will be retrieved and completely shifted one position to the left (when $L / R=1$) or one position to the right (when $L / R=0$). The space caused by the shift (with a left shift it will be M0, and with a right shift it will be M16L-1), is replaced by the status of fill-in bit "INB". The status of the bits popped out (with a left shift it will be M16L-1, and with a right shift it will be MO) will appear at the output bit "OTB". Then the results of this shifted matrix will be filled into the destination matrix Md.

7-15-7 MATRIX BIT ROTATE

- When rotate control "EN" = 1 or has a transition from 0 to 1 (P instruction), matrix Ms will be completely retrieved and rotated by one bit towards the left (when $L / R=1$) or to the right (when $L / R=0$). The space created by the rotation (with a left rotation it will be M0, and with a right rotation it will be M16L-1) will be replaced by the status of the rotated-out bit (with a left rotation it will be M16L-1, and with a right rotation it will be M0). The rotated-out bit will not only be used to fill the above-mentioned space, it will also be transferred to rotated-out bit "OTB".

7-15-8 MATRIX BIT STATUS COUNT(MBCNT)

	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\underset{\substack{w \times 0 \\ w \times 1008}}{ }$	$\begin{gathered} \text { wro } \\ \text { wr1008 } \end{gathered}$	$\begin{gathered} \text { WMO } \\ \text { wr29584 } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { ws3888 } \end{gathered}$	$\begin{gathered} \hline{ }^{\text {T0 }} \\ 1 \\ \hline 1023 \end{gathered}$	$\begin{gathered} \text { co } \\ \text { c1279 } \\ \text { c129 } \end{gathered}$	$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \text { R34768 } \\ & \text { R34895 } \end{aligned}$	$\begin{aligned} & \text { R35024 } \\ & \text { R35151 } \end{aligned}$	$\begin{aligned} & \text { R35280 } \\ & \text { R43223 } \end{aligned}$	$\begin{aligned} & \text { R43324 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \hline \text { D0 } \\ 111999 \end{gathered}$	$\begin{gathered} 2 \\ 2 \\ 256 \end{gathered}$	$\begin{gathered} \hline \mathrm{v}, \mathrm{z} \\ \text { popg } \end{gathered}$
Ms	\bigcirc		\bigcirc											
L							\bigcirc				$\bigcirc *$	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	$\bigcirc *$	\bigcirc		

Description

- When count control "EN" = 1 or has a transition from 0 to 1(P instruction), then among the 16 L bits of the Ms matrix, this instruction will count the total amount of bits with a status of $1 \quad($ when input " $1 / 0$ " $=1$) or the total amount of bits with a status of 0 (when input " $1 / 0$ " $=0$). The results of the counting will be stored into the register specified by D. If the value of these amounts is 0 , then the Result-is- 0 flag " $D=0$ " will be set to 1 .

- This program sets X 1 first as 0 (to count bits with status of 0) and then as 1 (to count bits with status of 1) and let the signal X0 has a transition from $0 \rightarrow 1$ for both case, the execution results are shown at right in the diagram below .

7-16 NC Positioning Instruction (FUN140~143)

7-16-1 ICA

	X	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
	$\begin{gathered} \text { CPU's } \\ \text { Xn } \end{gathered}$	$\begin{gathered} \text { WXO } \\ \text { WX10 } \\ 08 \end{gathered}$	$\begin{gathered} \text { WY0 } \\ \text { WY10 } \\ 08 \end{gathered}$	$\begin{gathered} \text { WMO } \\ \text { WM195 } \\ 78 \end{gathered}$	$\begin{gathered} \text { WSO } \\ \text { WS30 } \\ 88 \end{gathered}$	$\begin{array}{\|c} \text { T0 } \\ \text { T100 } \\ 23 \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{C} 0 \\ \mathrm{C} 127 \\ 9 \end{gathered}\right.$	$\begin{gathered} \mathrm{RO} \\ \mathrm{~B} \\ \mathrm{R} 347 \\ 67 \end{gathered}$	$\begin{gathered} \text { R347 } \\ 68 \\ \text { 1 } \\ \text { R348 } \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} \text { R350 } \\ 24 \\ \text { R } \\ \text { R31 } \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} 352 \\ 80 \\ 1 \\ \mathrm{R} 432 \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} 432 \\ 24 \\ 1 \\ \mathrm{R} 473 \\ 19 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { D0 } \\ \text { D119 } \\ 99 \end{array}$	
Pw														0~7
Ls	\bigcirc													
Fo								\bigcirc				\bigcirc	\bigcirc	$\begin{array}{c\|} \hline 1 \sim 100000 \\ \text { or } 1 \sim \\ 200000 \\ \hline \end{array}$
Ag								\bigcirc				\bigcirc	\bigcirc	$0 \sim 36000$

FUN137 ICA	ICA	FUN137 ICA
Description		

1. The positioning axis can be controlled up to PSO7, but the actual maximum axis number that can be controlled varies with the host machine model.
2. The target working speed and the maximum frequency vary according to the host model, 100 K and 200K.
3. In general-purpose and advanced sports hosts, external input points $8^{\sim} 15$ of X will be reserved for the motion function and not supported by this command.
4. The external input point does not need additional special configuration in the interrupt setting in the I/O configuration. The relevant settings will be automatically made when the command is executed.

7-16-2 ICF

FUN138 ICF	ICF	FUN138 ICF
Symbol		

		Ps: Group of Pulse output (0~7)
		$0: Y 0$ \& Y1
		1: Y2 \& Y3
		2: Y4 \& Y5
		3: Y6 \& Y7
	$\underbrace{\text { ERR- Error }}_{\text {-ACT - In action }}$	4: Y8 \& Y9
		5: Y10 \& Y11
		6: Y12 \& Y13
		7: Y14 \& Y15
		Ls: External input X point index number (0~15)
		Fo: Target Axis working speed
		(1~100000 or 1~200000)
		Fd: Output pulse movement amount after interrupt capture

	X	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K
	$\begin{aligned} & \text { CPU's } \\ & \text { Xn } \end{aligned}$	$\begin{gathered} w \times 0 \\ w \times 10 \\ 08 \\ \hline \end{gathered}$	$\begin{gathered} \text { WYo } \\ \text { WY10 } \\ 08 \end{gathered}$	$\begin{gathered} \text { WMO } \\ \text { WM195 } \\ 78 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { WSO } \\ \text { wS30 } \\ 88 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { TO } \\ 1 \\ \text { T10 } \\ 23 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \mathrm{co} \\ 1 \\ \text { C127 } \\ 9 \end{array}$	$\begin{gathered} \text { R0 } \\ \text { R347 } \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} \text { R347 } \\ 68 \\ \text { 1 } \\ \text { R348 } \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} \text { R350 } \\ 24 \\ \text { R351 } \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} \text { R352 } \\ 80 \\ \text { R432 } \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} 432 \\ 24 \\ \mathrm{R} 473 \\ 19 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { D0 } \\ \text { D1119 } \\ 99 \\ \hline \end{array}$	
Pw														0~7
Ls	\bigcirc													
Fo								\bigcirc				\bigcirc	\bigcirc	$\begin{gathered} 1 \sim 100000 \\ \text { or } 100 \\ 200000 \\ \hline \end{gathered}$
Fd								\bigcirc				\bigcirc	\bigcirc	\bigcirc

FUN138 ICF	ICF	FUN138 ICF
Description		

1. The positioning axis can be controlled up to PSO7, but the actual maximum axis number that can be controlled varies with the host machine model.
2. The target working speed and the maximum frequency vary according to the host model, 100 K and 200K.
3. In general-purpose and advanced sports hosts, external input points $8 \sim 15$ of X will be reserved for the motion function and not supported by this command.
4. The external input point does not need additional special configuration in the interrupt setting in the I/O configuration. The relevant settings will be automatically made when the command is executed.

7-16-3 HSPWM

- The setting of resolution(RS) must be same between output0(YO) and output1(Y2) also the setting of output frequency (Pn). It means both output0 and output1 have the same output frequency and the same output resolution, only the pulse width can be different. Same principle for output2(Y4) and output3(Y6).
- When operation control "EN" = 1, the specified digital output will perform the PWM output, the expression for output frequency as shown bellow:

1. $f_{p w m}=\frac{184320}{\left(P_{n}+1\right)}$ While Rs (Resolution) $=1 / 100$
2. $\mathrm{f}_{\mathrm{pwm}}=\frac{18432}{\left(\mathrm{P}_{\mathrm{n}}+1\right)}$ While Rs (Resolution) $=1 / 1000$

Example 1 If Pn (Setting of output frequency) = 50, Rs = 0(1/100), then
$\mathrm{f}_{\mathrm{pwm}}=\frac{184320}{(50+1)}=3614.117 \ldots \ldots \fallingdotseq 3.6 \mathrm{KHz}$
$\mathrm{T}($ Period $)=\frac{1}{\mathrm{f}_{\mathrm{pwm}}} \fallingdotseq 277 \mathrm{uS}$
For Rs $=1 / 100$, if OR (Setting of output pulse width) $=1$, then $\mathrm{TO} \fallingdotseq 2.7 \mathrm{uS}$; if OR(Setting of output pulse width) $=50$, then To $\fallingdotseq 140$ uS.
.Output waveform :
(1). Pn (Output frequency $)=50, \mathrm{Rs}=0(1 / 100)$, OR (Output pulse width) $=1$:

(2). Pn (Output frequency) = 50, Rs = $0(1 / 100)$, OR (Output pulse width) $=50$:

FUN139 HSPWM	HIGH SPEED PULSE WIDTH MODULATION	FUN139 HSPWM
Example 2	If Pn (Setting of output frequency) = 200, Rs = $1(1 / 1000$), then	
$\mathrm{f}_{\mathrm{pwm}}=\frac{18432}{(200+1)} \fallingdotseq 91.7 \mathrm{~Hz} \quad ; \quad \mathrm{T}(\text { Period })=\frac{1}{\mathrm{f}_{\mathrm{pwm}}} \fallingdotseq 10.9 \mathrm{mS}$ For Rs = 1/1000, if OR(Setting of output pulse width) = 10, then T0 $\fallingdotseq 109 \mathrm{uS}$; if OR(Setting of output pulse width) $=800$, then $\mathrm{To} \fallingdotseq 8.72 \mathrm{mS}$.Output waveform : (1). Pn (Output frequency $)=200, R s=1(1 / 1000), O R($ Output pulse width $)=10$: $\begin{aligned} & \mathrm{To} \fallingdotseq 109 \mathrm{usec} \\ & \longrightarrow \nmid \end{aligned}$		
	$\mathrm{Tp} \fallingdotseq 10.90 \mathrm{msec}$	
(2) Pn (Output frequency $)=200, \mathrm{Rs}=1(1 / 1000), \mathrm{OR}($ Output pulse width $)=800$:		
$\mathrm{To} \fallingdotseq 8.72 \mathrm{msec}$		
$\mathrm{Tp} \fallingdotseq 10.90 \mathrm{msec}$		

7-16-4 High Speed Pulse Output Instruction

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140 HSPSO
Description		

1. The positioning axis can be controlled up to PSO7, but the actual maximum axis number that can be controlled varies with the host machine model.
2. The NC positioning program of the FUN140 (HSPSO) command is edited in the form of a text program; each positioning point is called one step (including output frequency, action stroke, and transfer conditions), and one FUN140 can program up to 250 positioning points. Each positioning point needs to occupy 9 registers.
3. The biggest advantage of storing the positioning program in the temporary register is that if the man-machine is combined with the machine control setting, the positioning program can be stored in the man-machine. When changing the mold, the man-machine can directly access the Locator of the sub-mold.
4. When the execution control input "EN"=1, if PsO~Ps7 are not occupied by other FUN140 instructions (Ps0=M9183, Ps1=M9184, Ps2=M9185, Ps3=M9186, Ps4=M9191, Ps5=M9192, Ps6= M9193, Ps7=M9194 state is ON, otherwise it is OFF), then start to execute from the next positioning point (if it has reached the last step, then start to execute from step 1 again); if PsO~7 are occupied by other FUN140 instructions, the FUN140 to be occupied releases the control right, and this instruction obtains the pulse output right of positioning control.
5. When the execution control "EN" $=0$, stop the pulse output immediately.
6. When the pause output "PAU"=1, and the execution control "EN" was previously 1 , the pulse output is paused. When the pause output "PAU" $=0$ and the execution control "EN" is still 1 , it will continue to output the unfinished pulse number.
7. When the output "ABT" = 1, stop the pulse output immediately. (The next time when the execution control input "EN"=1, it will be executed again from the first step positioning point)
8. When pulse output is in progress, the output indicator "ACT" is ON.
9. When the command is executed incorrectly, the output indication "ERR" is ON. (The error code is stored in the error code register)
10. When each step of positioning is completed, the output indication "DN" is ON.

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140 HSPSO

*** Be sure to set the working mode of the Pulse output (if not set, $\mathrm{Y} \mathrm{O}^{\sim} \mathrm{Y} 15$ is regarded as a general output) to one of the three modes of $U / D, P / R$ or A / B, the Pulse output can output normally.

U/D Mode: YO (Y2, Y4, Y6, Y8, Y10, Y12, Y14), as up pulse.
Y1 (Y3, Y5, Y7, Y9, Y11, Y13, Y15), as down pulse.
P/R Mode: YO (Y2, Y4, Y6, Y8, Y10, Y12, Y14), as the pulse out.
$Y 1(Y 3, Y 5, Y 7, Y 9, Y 11, Y 13, Y 15)$, as the direction.
A/B Mode: YO (Y2, Y4, Y6, Y8, Y10, Y12, Y14), as A phase pulse.
Y 1 (Y3, Y5, Y7, Y9, Y11, Y13, Y15), as B phase pulse.
The output polarity for Pulse Output can select to be Normally ON or Normally OFF.
※FUN140 does not support pulse mode (U), if you need to use it, please use it with FUN139 [Interface Processing Signal]

M9183	ON: Ps0 ready
	M9184
	OFF: Ps0 in action
M9185	ON: Ps1 ready
	OFF: Ps1 in action
M9186	ON: Ps2 ready
	OFF: Ps2 in action
M9188	ON: Ps3 ready
M9189	OFF: Ps3 in action
M9190	ON: Ps0 complete the last step

| FUN140 |
| :---: | :---: | :---: |
| HSPSO |\quad HIGH SPEED PULSE OUTPUT INSTRUCTION \quad| FUN140 |
| :---: |
| HSPSO |

R35324 : Ps0 the step number at the end of each step R35325 : Ps1 the step number at the end of each step R35326 : Ps2 the step number at the end of each step R35327: Ps3 the step number at the end of each step R35651 : Ps4 the step number at the end of each step R35652 : Ps5 the step number at the end of each step R35653 : Ps6 the step number at the end of each step R35654 : the step number at the end of each step

- Positioning Progrm Format:

SR : The initial register of the positioning program, the description is as follows:

SR	A55AH	Valid positioning program, the initial register flag must be A55AH	
SR+1	Total Steps	$; 1 \sim 250$	
SR+2			
SR+3			
SR+4			
SR+5			
SR+6			
SR+7			
SR+8 first step of point positioning program (each step			
SR+9			
SR+10			

Step N of point
positioning program

| FUN140 |
| :---: | :---: | :---: |
| HSPSO |\quad HIGH SPEED PULSE OUTPUT INSTRUCTION \quad| FUN140 |
| :---: |
| HSPSO |

Instruction Operation Working Register Description:
WR as Stating Register

$W R+0$	Steps currently working or reserved
$W R+1$	Work flag
+2	System use
$W R+3$	System use
$W R+4$	System use
$W R+5$	System use
$W R+6$	System use

$W R+0$: If the command is being executed, the content value of the temporary register is the number of steps being executed ($1 \sim \mathrm{~N}$).

If the instruction is not being executed, the content value of the register represents the number of steps currently reserved.

WR +1: B0~B7, Total steps
$B 8=$ Reserved
B9 = Reserved
B10 $=$ Reserved
B11 $=$ Reserved
B12 $=$ ON, Pulse output (output indication "ACT").
B13=ON, Command execution error (output indication "ERR").
B14=ON, One-step positioning is done (output indicates "DN").
***After each positioning point is completed, the output indication "DN" will remain ON; if you do not want the output indication to remain ON, then after each positioning point is completed, use the upper edge contact command controlled by the output indication coil to set WR +1 clear the content of the register to 0, and it can be achieved.

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140
HSP		

Edit Servo Command Table Using UperLogic
Click on the Servo Command Form in the project window: Project Name

| FUN140 |
| :---: | :---: | :---: |
| HSPSO |\quad HIGH SPEED PULSE OUTPUT INSTRUCTION \quad| FUN140 |
| :--- |
| HSPSO |

- Table type: Fixed as "servo command form".
- Table name: You can enter an easily identifiable name for the servo command form, which is convenient for future modification or debugging.
- Table start position: The start position of the data table start register SR used by the servo command instruction (FUN140).
※ For the establishment of the servo command form, please refer to Chapter 7 (Form Input and Editing) of the UperLogic Interface Manual, or click the command and press Z (shortcut key) to create it.

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140 HSPSO

- In order to make the positioning program easy to edit, read, and maintain, we have derived the following related commands under the FUN140 command. Users can directly edit and modify the positioning program under Uperlogic.
- The list of positioning derivative commands is as follows:

Command	Operand	Description
SPD	XXXXXX or Rxxxxx or Dxxxxx	- Frequency or speed of pulse wave output (FUN141 parameter $0=0$ is speed; parameter $0=1$ or 2 is frequency, the system defaults to frequency); operands can directly input constants or variables (Rxxxx, Dxxxx); When the element is a variable, a total of two temporary registers are required, such as D10, which means that D10 (Low Word) and D11 (High Word) are frequency or speed setting values. - When the speed setting is selected, the system will automatically convert the speed setting value into frequency output. - Frequency output range:1£frequency output $\leqq 100000$ or 200000 Hz *** When the frequency setting value $=0$, this instruction waits until the setting value is not equal to 0 before executing the positioning pulse output.

$\begin{aligned} & \text { FUN140 } \\ & \text { HSPSO } \end{aligned}$	HIGH SPEED PULSE OUTPUT INSTRUCTION	
DRV	ADR + + XXXXXXXX , Ut ADR + + XXXXXXXX \cdot Ps ADR , - XXXXXXXX , Ut ADR - - \cdot XXXXXXXX \cdot Ps ADR . $X X X X X X X X \cdot U t$ ADR , - XXXXXXXX Ut ADR . $X X X X X X X X \cdot P s$ ADR • • -XXXXXXXX Ps ADR . + . Rxxxx $\cdot \mathrm{Ut}$ ADR + + Rxxxx $\cdot \mathrm{Ps}_{s}$ ADR - - R Rxxxx \cdot Ut ADR - - Rxxxx Ps ADR , Rxxxx, Ut ADR . Rxxxx Ps ADR , + , Dxxxx . Ut ADR $\cdot+$, Dxxxx. Ps ADR.- Dxxxx. Ut ADR , - Dxxxx. Ps ADR , Dxxxx. Ut ADR . Dxxxx Ps ABS , XXXXXXXX, Ut ABS , - XXXXXXXXX Ut ABS . $X X X X X X X X$. Ps ABS , - XXXXXXXX Ps ABS . Rxxxx $\cdot \mathrm{Ut}$ ABS , Rxxxx Ps ABS , Dxxxx , Ut ABS , Dxxxx P Ps	Pulse output (When FUN141 parameter $0=1$, the unit is Ps ; when parameter $0=0$ or 2 , the unit is mm , Deg, Inch; the system defaults to Ps) When the pulse wave output unit is not Ps , the system will convert it to Ps number output according to the settings of parameters 1, 2, and 3 of FUN141. There are four operands in the DRV instruction, which are described as follows: The first operand: positioning coordinate selection ADR or ABS: ADR, relative value coordinate positioning. ABS, absolute value coordinate positioning. The second operand: selection of running direction (relative value coordinates are valid) ' + ' or ' - ': ' + ', run forward or count up. '- ' ', reverse or count down. Or ' $\mathrm{I}: \mathrm{l}$ ' , the running direction is determined by the stroke setting value (Positive value: Forward rotation; Negative value: Reverse rotation) The third operand: stroke setting value (pulse wave output). XXXXXXXX Constants or variables (Rxxxx, Dxxxx) can or be directly input; when using variables, -xxxxxxxx two temporary registers are required, or Rxxxx such as RO, which means that RO (Low or Dxxxx Word) and R1 (High Word) are stroke setting values. *** When the stroke setting value $=0$, no matter the coordinate is ADR or ABS, it means continuous operation. Stroke setting range:-99999999 \leq Stroke setting value \leq 99999999 The fourth operand: stroke setting value resolution Ut or Ps: when Ut, the resolution is one unit; (determined by FUN141 parameter 0,3) when Ps , the forced resolution is one Ps

	HIGH SPEED PULSE OUTPUT INSTRUCTION	
Command	Operand	Description
DRVC	AD,+ xxxxx, Ut R, or or or or,- Rxxxx, Ps ABS or , Dxxxx,	The use and operation element description of DRVC is the same as that of DRV instruction. ***DRVC is used for continuous multi-stage speed change control (up to 8 stages) *** For the continuous multi-stage speed change control formed by DRVC, only the first DRVC instruction can use absolute value coordinate positioning. ***The running direction of DRVC can only be determined by ' + ' or ' -' ***The direction of continuous multi-stage speed control (forward and reverse) can only be determined by the direction of the first stage, and the direction operator of the subsequent command is invalid; that is, the multi-stage speed change control can only be in the same direction. Example: Continuous three-stage speed control *** Note: The number of DRVC instructions must be one less than the number of consecutive segments, that is, the last segment must use the DRV instruction.

$\begin{aligned} & \text { FUN140 } \\ & \text { HSPSO } \end{aligned}$	HIGH SPEED PULSE OUTPUT INSTRUCTION	
Command	Operand	Description
		The above example is three consecutive speed control, DRVC instruction uses two, and the third section must use DRV instruction. The above example shows:
DRVZ	MD1	DRVZ is a convenient return-to-origin command that supports MD1 return-to-origin. ***For details about MD1 of DRVZ, please refer to Section 9.6 (Mechanical Return to Origin).

Note: Comparison between relative coordinate positioning (ADR) and absolute value coordinate positioning (ABS)

$\begin{gathered} \text { FUN140 } \\ \text { HSPSO } \end{gathered}$		HIGH SPEED PULSE OUTPUT INSTRUCTION FUN140 HSPSO
Command	Operand	Description
WAIT	TIME, XXXXX or Rxxxxx or Dxxxxx or X0~X1023 or Y0~Y1023 or M0~ M29599 or S0~S3103	- When the pulse output is completed, it is necessary to execute the next waiting command; There are five types of operands, which are described as follows: Time: Waiting time (unit is 0.01 second), you can directly input constant or variable (Rxxxx or Dxxxx); when the timer is up, execute the GOTO instruction the number of steps. X0~X1023: Wait for the input contact signal to be ON, and execute the number of steps indicated by GOTO. Y0~Y1023: Wait for the output contact signal to be ON, and execute the number of steps indicated by GOTO. M0~M29599: Wait for the internal relay to be ON, and execute the number of steps indicated by GOTO. S0~S3103: Wait for the step relay to be ON, and execute the number of steps indicated by GOTO.
ACT	TIME, XXXXX or Rxxxxx or Dxxxxx	- After the pulse wave outputs the action time described by ACT, immediately execute the steps indicated by GOTO; that is, after the pulse wave output for a period of time, immediately execute the next step. The action time (unit: 0.01 second) can be directly input as a constant or variable (Rxxxxx or Dxxxxx); when the action time is up, the number of steps indicated by GOTO will be executed.

$\begin{gathered} \text { FUN140 } \\ \text { HSPSO } \end{gathered}$		HIGH SPEED PULSE OUTPUT INSTRUCTION $\begin{array}{c}\text { FUN140 } \\ \text { HSPSO }\end{array}$
Command	Operand	Description
EXT	$\begin{aligned} & \text { X0~X1023 } \\ & \text { or Y0~Y1023 } \\ & \text { or M0~ } \\ & \text { M29599 } \\ & \text { or S0~S999 } \end{aligned}$	OExternal trigger command, when the pulse wave output is in progress (the number of pulse waves has not been sent), if the external trigger signal is activated (ON), the number of steps indicated by GOTO will be executed immediately; if the pulse wave output has been completed, the external trigger signal has not yet Action is the same as the WAIT instruction, the number of steps indicated by GOTO will be executed only when the signal (ON).
GOTO	NEXT or 1~N or Rxxxxx or Dxxxxx	When the conditions of WAIT, ACT, EXT and other instructions are met, use the GOTO instruction to describe the number of steps to be executed. NEXT: Represents the next step $1 \sim N$: Execute the first few steps Rxxxxx: The number of steps to be executed is stored in the temporary register Rxxxxx Dxxxxx: The number of steps to be executed is stored in the temporary register Dxxxxx
MEND		Positioning program ends

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140 HSPSO

- Writing of positioning program:

Before editing the positioning program, you must first complete the FUN140 command, and specify the initial register number to store the positioning program in the FUN140 command; when editing the positioning program, the newly edited positioning program will be stored in the specified register In a block, each locating point (called 1 step) will occupy 9 registers. If there are N locating points (N steps), a total of $\mathrm{N} \quad 9+2$ registers will be occupied.
*** Note: The register for storing the positioning program cannot be reused!
Program Format and Examples:

FUN140 HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140 HSPSO

Program Example: Jog Forward

When the button is pressed for less than 0.5 seconds (variable), only one (variable) pulse is output; When the inching button is pressed for more than 0.5 seconds (variable), the pulse wave will be output continuously (frequency is 10 KHz , variable), and the output will not stop until the inching button is released; or it can be designed to only output N pulses at most.

FUN140		
HSPSO	HIGH SPEED PULSE OUTPUT INSTRUCTION	FUN140 HSPSO

Program Example: Jog Backward

When the step back button is pressed for less than 0.5 seconds (variable), only one (variable) pulse is output;
When the button is pressed for more than 0.5 seconds (variable), the pulse wave will be output continuously (frequency is 10 KHz , variable), and the output will not stop until the button is released; or it can be designed to only output N pulses at most wave number.

- Clear end signal
- Executed from the first step each time
- After the last step is executed, set end signal

7－16－5 POSITIONING PROGRAM PARAMETER SETTING COMMAND（MPARA）

FUN141 MPARA	MPARA					FUN141 MPARA
Symbol						
$\text { 執行控制 }-E N-\left[\begin{array}{l} \text { 階梯圖符號 } \\ \text { 141.MPARA } \\ \text { Ps }: \\ \text { SR: } \end{array}\right]-$	ERR－鍺語訊息		Ps：Group of Pulse output（0～7） SR：Parameter table starting register， 18 parameters in total，occupying 24 registers			
		HR	DR	ROR	K	
		$\begin{gathered} \text { R0 } \\ \text { \| } \\ \text { R34767 } \end{gathered}$	$\begin{gathered} \text { D0 } \\ \text { । } \\ \text { D11999 } \end{gathered}$	$\begin{gathered} \mathrm{R} 43224 \\ \text { । } \\ \mathrm{R} 47319 \end{gathered}$	2 1 256	
	Ps				0～7	
	SR	\bigcirc	\bigcirc	\bigcirc		
Description						

- The positioning axis can be controlled up to PSO7, but the actual maximum axis number that can be controlled varies with the host machine model.
- It is not necessary to use this instruction (But in the first-time setting is necessary). if the system default for parameter values is matching what user demanded, then this instruction is not needed. However, if it needs to change the parameter value dynamically, this instruction is required.
- This instruction incorporates with FUN140 for positioning control purpose.
- Whether the execution control input "EN" $=0$ or 1 , this instruction will be performed.
- When there are any errors in parameter value, the output indication "ERR" will be ON. (The error code is stored in the error code register.)

FUN141 MPARA	MPARA			FUN141 MPARA
R2000	$1 ~ 65535 \text { Ps/Rev }$	Parameter 0	System default =1	
R2001		Parameter 1	System default $=2000$	
DR2002	$1 \sim 999999$ $\mu \mathrm{M} / \operatorname{Rev}$ $1 \sim 999999$ $\mathrm{mDeg} / \operatorname{Rev}$ $1 \sim 99999930.1$ minch/Rev	Parameter 2	System default $=2000$	
R2004	0~3	Parameter 3	System default =2	
DR2005	$\begin{array}{ll} 1 \sim 921600 & \text { Ps } / \mathrm{sec} \\ 1 \sim 153000 & \end{array}$	Parameter 4	System default =460000	
DR2007	$\begin{array}{ll} 0 \sim 921600 & \text { Ps } / \mathrm{sec} \\ 1 \sim 153000 & \end{array}$	Parameter 5	System default =141	
R2009	1~65535 Ps/sec	Parameter 6	System default =1000	
R2010	0~32767	Parameter 7	System default =0	
R2011	0~30000	Parameter 8	System default =5000	
R2012	0~1 $\quad 0 \sim 1$	Parameter 9	System default $=0100 \mathrm{H}$	
R2013	-32768~32767	Parameter 10	System default =0	
R2014	-32768~32767	Parameter 11	System default =0	
R2015	0~30000	Parameter 12	System default $=0$	
R2016	0~30000	Parameter 13	System default =500	
DR2017	0~1999999	Parameter 14	System default $=0$	
DR2019	$00 \mathrm{H} \sim \mathrm{FFH} \quad 00 \mathrm{H} \sim$ FFH	Parameter 15	System default =FFFFFFFFH	
	OOH~FFH OOH~FFH			
DR2021	-999999~999999	Parameter 16	System default $=0$	
R2023	0~255	Parameter 17	System default =1	

| FUN141 |
| :--- | :--- | :--- |
| MPARA |\quad MPARA | FUN141 |
| :--- |
| MPARA |

- Parameter 1: pulse number/1 revolution, the default value is 2000 , that is, $2000 \mathrm{Ps} / \mathrm{Rev}$

The number of pulses required for one revolution of the motor (A)
$\mathrm{A}=1 \sim 65535$ (when it is above 32767 , set it as a decimal positive number) $\mathrm{Ps} / \mathrm{Rev}$
When parameter $14=0$, take parameter 1 as pulse number $/ 1$ revolution.
When parameter $14 \neq 0$, take parameter 14 as pulse number $/ 1$ revolution.

- Parameter 2: movement amount/1 revolution, the default value is 2000 , that is, $2000 \mathrm{Ps} / \mathrm{Rev}$
- The distance driven by one revolution of the motor (B)

B=1~999999 $\mu \mathrm{M} /$ Rev
1 ~ 999999 mDeg/Rev
1 ~ 999999x0.1 minch/Rev

- Parameter 3: The minimum setting unit, the default value is 2 , equivalent to two decimal places

	Set Value $=0$, Mechanical unit; Set Value $=2$, Compound unit ;			Set Value 1 Motor unit Ps
	mm	Deg	Inch	
Set Value $=0$	x1	x1	$\times 0.1$	$\times 1000$
Set Value =1	$\times 0.1$	$\times 0.1$	$\times 0.01$	$\times 100$
Set Value $=2$	$\times 0.01$	$\times 0.01$	x0.001	x10
Set Value = 3	x0.001	x0.001	x0.0001	x1

FUN141 MPARA	MPARA	FUN141

Parameter 4: Maximum speed setting, the default value is 460000 , that is, $460000 \mathrm{Ps} / \mathrm{Sec}$
O Motor and compound unit: $1 \sim 921600 \mathrm{Ps} / \mathrm{Sec}$
O Mechanical unit: $1 \sim 153000$ ($\mathrm{cm} / \mathrm{Min}, \mathrm{x} 10 \mathrm{Deg} / \mathrm{Min}$, Inch/Min)
But the highest frequency can not be greater than $921600 \mathrm{Ps} / \mathrm{Sec}$
f_max $=\left(V_{-} \max \times 1000 \times A\right) /(6 \times B) \leq 921600 \mathrm{Ps} / \mathrm{Sec}$
f_min $\geq 1 \mathrm{Ps} / \mathrm{Sec}$

$$
\text { Note: A = parameter 1, B = parameter } 2
$$

- Parameter 5: start/end speed, default value=141

O Motor and compound unit: 1~921600 Ps/Sec
O Mechanical unit: 1~15300 (cm/Min $\times 10$ Deg/Min. Inch/Min)
But the highest frequency cannot be greater than $921600 \mathrm{Ps} / \mathrm{Sec} \cdot$

- Parameter 6: homing deceleration speed, the default value is 1000

Motor and compound unit: $1 \sim 65535 \mathrm{Ps} / \mathrm{Sec}$
Mechanical unit: 1~15300 (Cm/Min, x10 Deg/Min, Inch/Min)

- Parameter 7: Gear backlash correction value, default value=0

Note: Multi-axis linear interpolation command is invalid
Setting range: $0 \sim 32767$ Ps。
When walking in reverse, the walking distance will automatically add this value.

| FUN141 |
| :--- | :--- | :--- |
| MPARA |\quad MPARA | FUN141 |
| :---: |

- Parameter 8: Acceleration and deceleration time setting, default value=5000, unit is mS .

Note: Multi-axis linear interpolation command is invalid
Setting range: $0 \sim 30000 \mathrm{mS}$.
This time represents the time required to accelerate from rest to maximum speed (parameter 4), or decelerate from maximum speed to rest.
The acceleration and deceleration of this system is equal slope control.
When parameter $12=0$, this parameter is used as the deceleration time.
The acceleration and deceleration control of this system will automatically move in a triangle wave or trapezoid wave according to the actual action stroke.

- Parameter 9: Setting of homing direction and running direction, the default value is 0100H
Note: Multi-axis linear interpolation command is invalid

	b15	b8 b7
SR+12	Parameter 9-1	Parameter 9-0

- Parameter 9-0: Running direction setting, the default value is 0

When the set value $=0$, the forward rotation pulse output, the current Ps value will increase Reverse the pulse output, the current Ps value will decrease
When the set value = 1 , the forward rotation pulse output, the current Ps value will decrease
Reverse the pulse output, and increase the current Ps value

- Parameter 9-1: Homing return direction setting, the default value is 1

When the set value is 0 , the homing direction is the current Ps value plus the upward direction (the origin is on the right)
When the set value $=1$, the direction of homing is the direction of decreasing the current Ps value (the origin is on the left)

- Parameter 10: Forward rotation movement correction value, default value=0

Note: Multi-axis linear interpolation command is invalid
Setting range: 32768 ~ 32767 Ps

- When outputting forward rotation pulse wave, this value will be automatically added as the moving distance.
Parameter 11: Reverse movement compensation value, default value=0 Note: Multi-axis linear interpolation command is invalid

Setting range:-32768~32767 Ps

- When the pulse output is reversed, this value will be automatically added as the moving distance.
- Parameter 12: Deceleration time setting, the default value $=0$, the unit is mS

Note: The multi-axis linear interpolation command is invalid

- Setting range : 0~30000 mS 。
- When parameter $12=0$, use parameter 8 as the deceleration time.
- When parameter $12 \neq 0$, use parameter 12 as the deceleration time.

Parameter 13: Interpolation acceleration and deceleration time (fixed number) setting, the default value is 500
Note: Multi-axis line tweening command is dedicated

- Setting range: $0 \sim 30000 \mathrm{mS}$
- It is used to set the time required to accelerate from stillness (speed=0) to the working frequency during linear interpolation motion; this time is also used for deceleration and stop control
- Parameter 14: pulse number/1 revolution, the default value is 0
- Setting range: 0 ~ 1999999 。
- When parameter $14=0$, take parameter 1 as pulse number/1 revolution.
- When parameter $14 \neq 0$, take parameter 14 as pulse number/1 revolution.
- Parameter 15: Control interface I/O setting, the default value is FFFFFFFFH

	b15 b8 b7	b0
SR+19	Parameter 15-1	Parameter 15-0
SR+20	Parameter 15-3	Parameter 15-2

- Parameter 15-0: Proximity DOG input contact setting; must be the input point of the host (SR+19)
b6 ~ b0 : Proximity DOG input contact number ($0 \sim 15$, namely $\mathrm{XO} \sim \mathrm{X} 15$)
b7 = 0: Near-point DOG input is a normally open contact (A or NO contact) = 1: The near-point DOG input is a normally closed contact (B or NC contact) b7 ~ b0=FFH, no near-point DOG input
- Parameter 15-1: Travel limit input contact setting (SR+19)
b14~b8: Travel limit input contact number ($0 \sim 125$, namely X0 ~ X125)
b15 = 0: Travel limit input is a normally open contact (A or NO contact) = 1: Travel limit input is a normally closed contact (B or NC contact)
b15~b8=FFH: No stroke limit input

FUN141 MPARA	MPARA	FUN141 MPARA

- Parameter 15-2: Zero signal PG0 input contact setting; must be the input point of the host $(S R+20)$
b6 ~ b0 : Zero signal PG0 input contact number ($0 \sim 15$, namely $\mathrm{X0} \sim \mathrm{X} 15$)
b7 $=0$: The leading edge of near point DOG starts to count the zero point signal
$=1$: The trailing edge of the near point DOG starts to count the zero signal
b7 ~ b0 = FFH : No zero signal PG0 input
- Parameter 15-3: Zero reset signal CLR output contact setting; must be the output point of the host ($\mathrm{SR}+20$)
b15 ~ b8 : Output contact number of zero reset signal CLR (0 ~ 23, that is, Y0 ~ Y23) b15 ~ b8=FFH: CLR output without reset signal
- Parameter 16: Mechanical origin position value, the default value is 0

$$
\text { -999999 ~ } 999999 \text { Ps }
$$

- Parameter 17: Zero point signal number, the default value is1

$$
0 \sim 255 \text { Count }
$$

7-16-6 STOP THE HSPSO PULSE OUTPUT (PSOFF)

FUN142 P PSOFF	STOP THE HSPSO PULSE OUTPUT		FUN142 P PSOFF
Symbol			

- The positioning axis can be controlled up to PSO7, but the actual maximum axis number that can be controlled varies with the host machine model.
- When execution control "EN" =1 or changes from $0 \rightarrow 1$ (P instruction), this instruction will enforce the assigned number set of HSPSO (High Speed Pulse Output) to stop pulse output.
- While in the application for mechanical original point reset, as soon as reach the original point can use this instruction to stop the pulse output immediately, so as to make the original point stop at the same position every time when performing mechanical original point resetting.

7-16-7 Convert The Current Pulse Value to Display Value

- The positioning axis can be controlled up to PSO7, but the actual maximum axis number that can be controlled varies according to the host machine model.
- When execution control "En" $=1$ or changes from $0 \rightarrow 1$ (\mathbb{P} instruction), this instruction will convert the assigned current pulse position (PS) to be the mm (or Deg, Inch, or PS) that has same unit as the set value, so as to make current position displaying.
- Only when the FUN140 instruction is executed, then it can get the correct conversion value by executing this instruction.

| FUN143 P
 PSCNV | CONVERT THE CURRENT PULSE VALUE TO DISPLAY VALUE
 (mm, Deg, Inch, PS) | FUN143 P
 PSCNV |
| :---: | :---: | :---: | :---: |
| Example | When M0 changes from 0 to 1, convert the
 current pulse wave position of Ps0 (DR4088) into
 mm (or Deg or Inch or PS) with the same unit as
 the set value, and store it in DD10 as the current
 position display. | |

FUN144 HSPWM2	HIGH SPEED PULSE WIDTH MODULATION 2	FUN144 HSPWM2
Description		

1. Compared with FUN139, FUN144 provides more direct and convenient high-speed PWM output control without calculating parameters through built-in formulas.
2. The maximum output frequency may be 100 K or 200 K depending on the model. If the maximum output frequency exceeds the maximum output frequency, it will not be executed.

7-17 Enable/Disable (FUN145~146)

7-17-1 ENABLE CONTROL OF THE INTERRUPT AND PERIPHERAL

- When enable control "EN" $=1$ or changes from $0 \rightarrow 1$ (\boldsymbol{P} instruction), it allows the external input or peripheral interrupt action which is assigned by LBL.
- The enabled interrupt label name is as follows:(Please refer the section 5.3 for details).

FUN145 EN	ENABLE CONTROL OF THE INTERRUPT AND PERIPHERAL					FUN145 EN
Description						
LBL name	Description	LBL name	Description	$\begin{gathered} \text { LBL } \\ \text { name } \end{gathered}$	Description	
HSCOI	HSCO High speed counter interrupt	X4-1	X4 negative edge interrupt	$\begin{aligned} & \text { LTM2 } \\ & \text { I } \end{aligned}$	10 ms timer LTM2 interrupt	
HSC1I	HSC1 High speed counter interrupt	X5 + 1	X5 positive edge interrupt	$\begin{aligned} & \text { LTM3 } \\ & \text { I } \end{aligned}$	10 ms timer LTM3 interrupt	
HSC2I	HSC2 High speed counter interrupt	X5-1	X5 negative edge interrupt	HSTOI	HSTO High speed counter interrupt	
HSC3I	HSC3 High speed counter interrupt	X6+1	X6 positive edge interrupt	HST1I	HST1 High speed counter interrupt	
X0+1	XO positive edge interrupt	X6-I	X6 negative edge interrupt	HST2I	HST2 High speed counter interrupt	
X0-I	XO negative edge interrupt	X7+1	X7 positive edge interrupt	HST3I	HST3 High speed counter interrupt	
X1+I	X1 positive edge interrupt	X7-1	X7 negative edge interrupt			
X1-I	X1 negative edge interrupt	$\begin{aligned} & \text { STM } \\ & \text { OI } \end{aligned}$	1 ms timer STMO interrupt			
X2+1	X2 positive edge interrupt	$\begin{aligned} & \text { STM } \\ & 1 \mathrm{I} \end{aligned}$	1 ms timer STM1 interrupt			
X2-I	X2 negative edge interrupt	$\begin{aligned} & \text { STM } \\ & 21 \end{aligned}$	1 ms timer STM2 interrupt			
X3+1	X3 positive edge interrupt	$\begin{aligned} & \text { STM } \\ & 31 \end{aligned}$	1 ms timer STM3 interrupt			
X3-1	X3 negative edge interrupt	$\begin{aligned} & \text { LTM } \\ & \text { OI } \end{aligned}$	10 ms timer LTMO interrupt			
X4+1	X4 positive edge interrupt	$\begin{aligned} & \text { LTM } \\ & 1 \mathrm{I} \end{aligned}$	10 ms timer LTM1 interrupt			

| FUN145 \boldsymbol{P} |
| :---: | :---: | :---: |
| EN |\quad ENABLE CONTROL OF THE INTERRUPT AND PERIPHERAL \quad| FUN145 \boldsymbol{P} |
| :---: |
| EN |

- In practical application, some interrupt signals should not be allowed to work at sometimes, however, it should be allowed to work at some other times.Employing FUN146 (DIS) and FUN145 (EN) instructions could attain the above mentioned demand.

Example

- When MO changes from $0 \rightarrow 1$, it allows XO to send interrupt when $\mathrm{X0}$ changes from $0 \rightarrow 1$. CPU can rapidly process the interrupt service program of XO+I.

7-17-2 DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL

FUN146 P DIS	DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL			$\begin{gathered} \text { FUN146 } \\ \text { DIS } \end{gathered}$
Symbol				
Ladder symbol$\text { Disable control-EN }\left[\begin{array}{c\|c} 146 \mathrm{P} . \\ \mathrm{DIS} & \text { LBL } \\ \hline \end{array}\right.$			LBL : Interrupt label intended to disable or peripheral name to be disabled.	
Description				

- When prohibit control "EN" =1 or changes from $0 \rightarrow 1$ (\mathbf{P} instruction), it disable the interrupt or peripheral operation designated by LBL.
- The interrupt label name is as follows:

| FUN146 \mathbf{P} |
| :---: | :---: | :---: |
| DIS |\quad DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL \quad| FUN146 \mathbf{P} |
| :---: |
| DIS |

LBL name	Description	LBL name	Description	LBL name	Description
HSCOI	HSCO High speed counter interrupt	X4-1	X4 negative edge interrupt	$\begin{aligned} & \text { LTM2 } \\ & \text { I } \end{aligned}$	10 ms timer LTM2 interrupt
HSC1I	HSC1 High speed counter interrupt	X5+1	X5 positive edge interrupt	LTM3 I	10 ms timer LTM3 interrupt
HSC2I	HSC2 High speed counter interrupt	X5-1	X5 negative edge interrupt	HSTOI	HSTO High speed counter interrupt
HSC3I	HSC3 High speed counter interrupt	X6+1	X6 positive edge interrupt	HST1I	HST1 High speed counter interrupt
X0+I	XO positive edge interrupt	X6-1	X6 negative edge interrupt	HST2I	HST2 High speed counter interrupt
X0-I	XO negative edge interrupt	X7+1	X7 positive edge interrupt	HST3I	HST3 High speed counter interrupt
X1+I	X1 positive edge interrupt	X7-1	X7 negative edge interrupt		
X1-I	X1 negative edge interrupt	STMO	1 ms timer STMO interrupt		
X2+1	X2 positive edge interrupt	$\begin{aligned} & \text { STM1 } \\ & 1 \\ & \hline \end{aligned}$	1 ms timer STM1 interrupt		
X2-1	X2 negative edge interrupt	$\begin{array}{\|l} \text { STM2 } \\ 1 \end{array}$	1 ms timer STM2 interrupt		
X3+1	X3 positive edge interrupt	$\begin{aligned} & \text { STM3 } \\ & 1 \end{aligned}$	1 ms timer STM3 interrupt		
X3-1	X3 negative edge interrupt	LTMO	10 ms timer LTMO interrupt		
X4+1	X4 positive edge interrupt	$\text { LTM } 1$	10 ms timer LTM1 interrupt		

| FUN146 『 |
| :---: | :---: | :---: |
| DIS |\quad DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL \quad| FUN146 \mathbf{P} |
| :---: |
| DIS |

- In practical application, some interrupt signals should not be allowed to work at certain situation. To achieve this, this instruction may be used to disable the interrupt signal.

Example

MO
1

- When M 0 changes from $0 \rightarrow 1$, it prohibits X 2 from sending interrupt when X 2 changes from $0 \rightarrow 1$.

7-18 NC Positioning Instructions II (FUN148)

7-18-1 MANUAL PULSE GENERATOR FOR POSITIONING

FUN148 MPG	MANUAL PULSE GENERATOR FOR POSITIONING	
Symbol		
		Sc: Source of high-speed counter; 0~7 Ps: Axis of pulse output; $0 \sim 3$ Fo: Setting of output speed (2 registers) Mr : Setting of multipliers (2 registers) Mr+0: Multiplicand (Fa) $\mathrm{Mr}+1$: Dividend (Fb) WR: Starting address of working registers, it needs 4 registers

	HR	ROR	DR	K
	$\begin{gathered} \text { RO } \\ \text { R38 } \\ 39 \end{gathered}$	R500		眭
		R807	$\begin{gathered} \text { D39 } \\ 99 \end{gathered}$	
		1		
Sc	U	U	U	0~7
Ps	U	U	U	
Fo	\bigcirc	U	\bigcirc	
Mr	U	U	U	
WR	\checkmark	U*	U	

$\begin{array}{|c|c|c|}\hline \text { FUN148 } \\ \text { MPG }\end{array} \quad$ MANUAL PULSE GENERATOR FOR POSITIONING $\left.\begin{array}{c}\text { FUN148 } \\ \text { MPG }\end{array}\right]$

- Let this instruction be executed in 10 mS fixed time interrupt service routine (PV value set 5 unit times is 10 ms , total 50 ms , LTM1I) ` or by using the 0.1 mS high speed timer to generate 10 mS fixed time interrupt service to have accurate repeat time to sample the pulse input from manual pulse generator. If it comes the input pulses, it will calculate the number of pulses needing to output according to the setting of multiplier ($\mathrm{Mr}+0$ and $\mathrm{Mr}+1$), and then outputs the pulse stream in the speed of setting (Fo) during this time interval.
- The setting of output speed (Fo) must be fast enough, and the acceleration / deceleration rate (Parameter 4 and parameter 8 of FUN141 instruction) must be sharp to guarantee it can complete the sending of pulse stream during the time interval if it is under high multiplier (100 or 200 times) situation.
- When execution "EN" =1, this instruction will sample the pulse input from manual pulse generator by reading the current value of assigned high speed counter every time interval; it doesn't have any output if it doesn't have any input pulse; but If it senses the input pulses, it will calculate the number of pulses needing to output according to the setting of multiplier ($\mathrm{Mr}+0$ and $\mathrm{Mr}+1$), and then outputs the pulse stream in the speed of setting (Fo) during this time interval.
- Number of output pulses $=$ (Number of input pulses \times Fa) $/ \mathrm{Fb}$
- This instruction also under the control of hardware resource management; it wouldn't be executed if the hardware is occupied.
- The output indicator $\mathrm{ACT}=1$ if it outputs the pulses; otherwise $\mathrm{ACT}=0$.
- This instruction will use 4 Registers(WR), other instructions can't share with.
- Please refer to Chapter 13 "The NC Positioning Control of M Serial PLC"of Advanced Application user manual for further details.

Chapter 7 Advanced Function Instructions

FUN148 MPG	MANUAL PULSE GENERATOR FOR POSITIONING	FUN148 MPG
Example 1		

X32: Select the Ost axis (PsO)
X33: Select the 1st axis (Ps1)
X 34 : output magnification is 1
X35: output magnification is 10
X36: output magnification is 100
M100: Manual wheel action selection
DR2005: Maximum output frequency of axis 0 (parameter 4 of FUN141 command); 200 K Hz R2011: Acceleration and deceleration time of the 0th axis (parameter 8 of the FUN141 instruction); 30 mS
DD600: Oth axis manual wheel actuation output frequency; 200 K Hz
DR2105: The maximum output frequency of the first axis (parameter 4 of the FUN141 command); 200K Hz
R2111: Acceleration and deceleration time of the first axis (parameter 8 of FUN141 instruction); 30 mS
DD602: 1st axis manual wheel actuation output frequency; 200 K Hz
Example description: Put the manual wheel positioning processing instructions of Ps0 and Ps1 in the 50MSI timing interrupt processing program.
When X32=1 and M100 $=1$, start Ps0 hand wheel positioning processing; each interval (50 mS) will sample the hand wheel input pulse (from HSCO); if no pulse input is sampled, FUN148 The command will not output; if there is a sampled pulse wave input, the output pulse number will be calculated according to the multiplier setting (D700 and D701), and then the calculated output pulse number will be output at the output frequency set by DD600.
Output pulse number $=($ HSCO input pulse number in interval time \times D700 $) / D 701$

7-19 Communication Instruction (FUN150~156)

7-19-1 MODBUS MASTER INSTRUCTION

FUN150	MODBUS MASTER INSTRUCTION	
M-BUS	(WHICH MAKES PLC AS THE MODBUS MASTER THROUGH PORT	FUN150
	M-BUS	
1~2)		
Description		

- FUN150 (M-BUS) instruction makes PLC act as Modbus master through Port $1 \sim 2$, thus it is very easy to communicate with the intelligent peripheral with Modbus RTU/ASCII protocol.
- The master PLC may connect with 247 slave stations through the RS-485 interface.
- Only the master PLC needs to use Modbus RTU/ASCII instruction.
- It employs the program coding method or table filling method to plan for the data flow controls; i.e. from which one of the slave station to get which type of data and save them to the master PLC, or from the master PLC to write which type of data to the assigned slave station. It needs only 7 registries to make definition; every 7 registers define one packet of data transaction.
- When execution control "EN" changes from $0 \rightarrow 1$ and Abort"ABT" is 0 , and if Port $1 / 2$ hasn't been controlled by other communication instructions [i.e. M9135(Port1) / M9138(Port2)], this instruction will control the Port $1 / 2$ immediately and set the M9135/M9138 to be 0 (which means it is being occupied), then going on a packet of data transaction immediately. If Port $1 / 2$ has been controlled ($\mathrm{M} 9135 / \mathrm{M} 9138=0$), then this instruction will enter into the standby status until the controlling communication instruction completes its transaction or pause/abort its operation to release the control right ($\mathrm{M} 9135 / \mathrm{M} 9138=1$), and then this instruction will become enactive, set M9135/M9138 to be 0 , and going on the data transaction immediately. ${ }^{\circ}$
- While in transaction processing, if operation control "ABT" becomes 1, this instruction will abort this transaction immediately and release the control right (M9135/M9138 = 1). Next time, when this instruction takes over the transmission right again, it will restart from the first packet of data transaction. ${ }^{\circ}$
- While " $A / R^{\prime \prime}=0$, Modbus RTU protocol ; "A/R" $=1$. Modbus ASCII protocol.
- While it is in the data transaction, the output indication "ACT" will be ON.
- If there is error occurred when it finishes a packet of data transaction, the output indication "DN" \& "ERR" will be ON.
- If there is no error occurred when it finishes a packet of data transaction, the output indication "DN" will be ON.
- For detailed application examples, please refer to Chapter 11 "Ethernet Function and Ethernet Communication" of the Advanced Software User Manual.

7-19-2 COMMUNICATION LINK INSTRUCTION (CLINK)

FUN151 CLINK	COMMUNICATION LINK INSTRUCTION (WHICH MAKES PLC ACT AS THE MASTER STATION IN CPU LINK NETWORK THROUGH PORT 1~2)		FUN151 CLINK
Symbol			

- This instruction provides MDO ~ MD1. The following are the function description of respective modes.
- FUN151 (CLINK) : MD 0, it makes PLC act as the master of FATEK CPU Link Network through Port 1~2
- The master PLC may connect with 254 slave stations through the RS485 interface.
- Only the master PLC needs to use FUN151 instruction, the slave doesn't need.
- It employs the program coding method or table filling method to plan for the data flow controls; i.e. from which one of the slave station to get which type of data and save them to the master PLC, or from the master PLC to write which type of data to the assigned slave station. It needs only 7 registries to make definition; every 7 registers define one packet of data transaction.
- When execution control "EN" changes from $0 \rightarrow 1$ and both inputs"PAU"and "ABT"are 0 , and if Port $1 / 2$ hasn't been controlled by other communication instructions [i.e. M9135 (Port1) / M9138 (Port2) = 1], this instruction will control the Port $1 / 2$ immediately and set the M9135/M9138 to be 0 (which means it is being occupied), then going on a packet of data transaction immediately. If Port $1 / 2$ has been controlled (M9135/M9138=0), then this instruction will enter into the standby status until the controlling communication instruction completes its transaction or pause/abort its operation to release the control right (M9135/M9138 =1), and then this instruction will become enactive, set M9135/M9138 to be 0 , and going on the data transaction immediately.
- While in transaction processing, if operation control"PAU"becomes 1 , this instruction will release the control right ($\mathrm{M} 9135 / \mathrm{M} 9138=1$) after this transaction. Next time, when this instruction takes over the transmission right again, it will restart from the next packet of data transaction.
- While in transaction processing, if operation control"ABT"becomes 1 , this instruction will abort this transaction immediately and release the control right (M9135/M9138=1). Next time, when this instruction takes over the transmission right again, it will restart from the first packet of data transaction.

	COMMUNICATION LINK INSTRUCTION	
FUN151	(WHICH MAKES PLC ACT AS THE MASTER STATION IN CPU LINK	FUN151
CLINK	NETWORK THROUGH PORT 1~2)	CLINK

- While it is in the data transaction, the output indication"ACT" will be ON.
- If there is error occurred when it finishes a packet of data transaction, the output indication"DN"\&"ERR" will be ON.
- If there is no error occurred when it finishes a packet of data transaction, the output indicatio "DN" will be ON.
- Please refer to Chapter 10.4 "The Applications for M-Series PLC Communication Link"

7-19-3 Network Active Communication (NCR)

FUN152 NCR		Network Active Communication									FUN152 NCR
Symbol											
						SR: Table starting register address MD: Modbus TCP active communication (=1) WR: Working register					
$\sum_{\substack{\text { opee. } \\ \text { Rand }}}^{\text {Range }}$	WY	WM	WS	TMR	CTR	HR	OR	SR	ROR	DR	K
	wyo	WMO	$\begin{gathered} \text { wso } \\ \text { wises } \end{gathered}$	$\begin{gathered} \mathrm{TO} \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c 0 \\ \substack{1279} \end{gathered}$	$\begin{gathered} \text { Rol } \\ \text { Rack } \end{gathered}$	${ }_{\substack{\text { R33024 } \\ \text { nen }}}$	${ }^{83580}$	${ }_{\substack{\text { Ra3324 } \\ \text { Rat319 }}}^{\text {ROR }}$	$\begin{gathered} \text { 00 } \\ \text { o1199999 } \end{gathered}$	$\underset{\substack{2 \\ 250}}{2}$
SR	\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc							
MD	\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc	1						
WR	\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc							
Description											

1. The FUN152 (NCR) command is connected to the smart peripheral (slave station) with the Modbus communication protocol through the Ethernet port.
2. This command is mainly based on the specified form, such as using the Modbus Master TCP form, read or write according to the specified form, and actively carry out network communication. The communication form must be set before use; only six registers are defined, and every 6 registers define a transfer transaction.
3. When EN is ON for this command, the communication will continue.
4. When the data transaction is being transmitted, the output indication "ACT" is ON.

FUN152 NCR	Network Active Communication			$\begin{gathered} \text { FUN152 } \\ \text { NCR } \end{gathered}$
Description				
SR occupies successive register				
SR	Word Size	Purpose	Description	
SR + 0	1	Identifying word: $0 \times 544 \mathrm{D}$	For identifying effective table:‘M', ‘'T’	
SR + 1	1	Total lots of data transaction	Each individual communication is expressed by 6 units of registers.	
SR + 2	2	Remote IP		
SR + 4	1	Remote port		
SR + 5	1	Maintain TCP online	$=0$. Creating one lot of online for each individual communication. $=1$. Maintain one lot of TCP online in the table.	
SR + 6	1	Overtime setting	Unit : 10 ms	
SR + 7	1	Re-test count		
SR + 8	1	Command code (Lot\#1)	$\begin{aligned} & =1 . \text { Read } \\ & =2 . \text { Write } \\ & =3 . \text { Write in individual lot } \end{aligned}$	
SR + 9	1	Data length	Register: $1 \sim 125$ Contact: $1^{\sim} 255$	
SR + 10	1	Type of Master PLC data	Please refer to $1^{\sim} 3$ and $12 \sim 13$ indicated in the description of Data Type Table provided below.	
SR + 11	1	Starting number of Master PLC data.	For effective scope, please refer to the details described in the Data Type Table provided below.	

	$\begin{gathered} \text { FUN152 } \\ \text { NCR } \end{gathered}$	Network active communication		FUN152 NCR
	Example	Slave Station (IP: 192.168.0.151) 400101~ 400105 -> Master Station (IP: 192.168.0.150) R100~R104		
00			152P.NCR SR: R1000 MD: 1 WR: R1500	

Description

When the input control "EN" changes from 0 to 1, based on the settings in the Modbus TCP table, the remote IP slave station reads the register data and stores it in the PLC master station, and continuously completes the data transaction.

The setting steps are as follows.
First add the Modbus Master form in the data form.
In the Modbus Master form, define the remote IP and Port, and the address to be read and written, including the data of the master station and the data of the slave station. Edit the Fun 152 NCR instruction on the Ladder of the master station.

FUN152 NCR	Network active communication	FUN152 NCR
Example		

Editing Communication Forms with UperLogic

Click in the project window
Communication Command Table: Project Name
Modbus Master Table \rightarrow
After right clicking, click "Add Modbus"
Master Table" with a form type of
"Modbus TCP Table",
Or on the "Project" tab, click "Data
Form", drop down to select "Modbus
Master Table", select "Add
Modbus Master Table", table Type "Modbus TCP table" is also
acceptable.

Fig. 86: Add Modbus Master Table

FUN152 NCR	Network active communication	FUN152 NCR
Example		

Fig. 87: Edit Modbus Master Table

- Table Type: Select "Modbus TCP Table".
- Table name: You can enter an easily identifiable name for the connection form, which is convenient for future modification or debugging.
- Table start position: Input the start position of the start register SR of the communication program (data transmission form) used by the communication command (FUN152).

Fig. 88: Modbus Master Table

- Remote IP: The IP address of the remote device.
- Remote port number: The port number of the remote device.
- Command: The master station reads the data from the Modbus slave station, or writes data to the Modbus slave station.
- Master station data: In the read operation, it is the location where the data is read from the slave station and stored, and in the write operation, it is the location from the master station to write the data to the slave station.
- Slave station information: The slave station wants to send back the position of the master station during the read operation, and the position of writing data from the master station to the slave station during the input operation. ${ }^{\circ}$
- Length: The length to be transmitted, the read length is 125 , and the write length is 123 .
- Connection maintenance: When starting, it will only initiate a TCP connection establishment request for the remote IP, and subsequent communications will exchange data on this connection; otherwise, it will re-establish a TCP connection for each communication.

7-19-4 CMCTL

FUN156P CMCTL	CMCTL	
Symbol		
\qquad A/M \qquad		ID : Used module number Pt : Appointed COMA/COMB ($A=0 ; B=1$) Ts : Communication table mask Bit 1 : Table 1 Bit 2 : Table 2 \| Bit 15 : Table 15 Bit 16~Bit 31 : Reserved. Do not use. MD : Set mode 0 : RUN ONCE 1 : RUN CYCLING 2 : STOP WR: Saving operations state BitO~Bit1 : Table 0 state Bit2~Bit3 : Table 1 state Bit30~Bit31 : Table 15 state = 0 : RUN_ONCE = 1 : RUN_CYCLING = 2 : STOP,

FUN156P CMCTL	CMCTL							FUN156 CMCTL
	mage	HR	OR	SR	ROR	DR	K	
	come	${ }^{\text {not }}$	R35024	R35280	R43224	com		
	ID						0-127	
	Pt						0-23	
	Ts	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0-63	
	MD	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0-63	
	WR	\bigcirc			\bigcirc	\bigcirc	5word	
Description								
Such command should be used with the CM25 and CM55 communication modules. Before each use, it is required to set up the communication module data.								

- EN OFF->ON will carry out communication control, ON->OFF will stop
- PAU is not yet supported
- The communication status code of each table will be updated in the allocated status register, and the address can be confirmed by using the device view

FUN156 : WR Description

Bit0	Table0 Status	$\begin{aligned} \text { Table0 }= & 0(00): \text { RUN_ONCE } \\ & =1(01): \text { RUN_CYCLING } \\ & =2(10): \text { STOP } \end{aligned}$
Bit1		
Bit2	Table1 Status	Table1 $=0$ (00): RUN_ONCE
		= 1(01): RUN_CYCLING
Bit3		$=2(10):$ STOP
Bit4	Table2 Status	Table2 $=0$ (00): RUN_ONCE
		= 1(01): RUN_CYCLING
Bit5		= 2(10): STOP
Bit6	Table3 Status	Table3 = 0(00): RUN_ONCE
Bit7		= 1(01): RUN_CYCLING
		$=2(10):$ STOP
Bit30	Table15 Status	Table15 $=0$ (00): RUN_ONCE
Bit31		= 1(01): RUN_CYCLING
		= 2(10): STOP

Reserved after Bit32

As indicated in the figure above, when M0 becomes 1, the command will open Port 0 of the No. \#O module and then start the communication according to Table 1 and Table 2 (0001b+0010b=0011b and then $3(10)$ is obtained). Next, select RUN CYCLING Mode and then RO for use as the working register.

7-20 Data Movement Instructions (FUN160~162)

7-20-1 Read/Write File Register

RWFR		Read/Write File Register												FUN160DP RWFR	
Symbol															
$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Range } \\ \text { one. } \\ \text { rand } \end{array} \\ \hline \end{array}$	wx	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR	FR
	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { wxo } \\ \text { wxiog } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { wroo } \\ \text { whios } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c} \substack{\text { who } \\ \text { whess }} \end{array}$	$\begin{gathered} \text { wsio } \\ \text { wssose } \end{gathered}$	$\begin{gathered} \text { To } \\ \substack{1023} \end{gathered}$	$\begin{gathered} c 0 \\ c \\ \text { cirg } \end{gathered}$		R34768 । R34895	$\begin{gathered} \hline \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	${ }_{\text {Re3s20 }}^{\text {eraza }}$	${ }_{\substack{\text { Re3224 } \\ \text { Re9319 }}}^{\text {Rer }}$	-		Y,	Do
Sa	\bigcirc		\bigcirc												
Sb															\bigcirc
Pr		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	$\bigcirc *$	$\bigcirc *$	\bigcirc			
L							\bigcirc				$\bigcirc *$	\bigcirc	1-511		
Description															

- When operation control "EN"=1 or changes from $0 \rightarrow 1$ (P instruction), it will perform the read ("R/W"=1) or write ("R/W"=0) file register operation. While reading, the content of data registers starting from Sa will be overwritten by the content of file registers addressed by the base file register Sb and record pointer Pr ; while writing, the content of file registers addressed by the base file register Sb and record pointer Pr will be overwritten by the content of data registers starting from Sa ; L is the operation quantity or record size. The access of file register adopts the concept of RECORD data structure to implement. For example, Sa=RO, $\mathrm{Sb}=\mathrm{FO}, \mathrm{L}=10$, the read/write details shown as below:

| FUN160DP |
| :---: | :---: | :---: |
| RWFR |\quad Read/Write File Register \quad FUN160DP | RWFR |
| :---: | :---: |

- For ladder program application, only this instruction can access the file registers.
- The record pointer will be increased by 1 after execution while pointer control input "INC"=1.
- This instruction will not be executed and error indicator "ERR" will be 1 while incorrect record size ($\mathrm{L}=0$ or $>\mathrm{511}$) or the operation out of the file register's range (F0 ~ F8191).

Example 1

FUN160DP RWFR	Read/Write File Register				FUN160DP RWFR
Example 2					

7-20-2 Write SD Card (WR-MP)

FUN161P WR-MP	Write Data Record into the MEMORY_PACK (Write memory pack)						$\begin{aligned} & \text { FUN161P } \\ & \text { WR-MP } \end{aligned}$
Symbol							
				```S:Starting address of the source data BK : Block number of the MEMORY_PACK • 0 ~1 Os:Offset of the block Pr : Address of the pointer L :Quantity of writing , 1 ~ 128 WR:Starting address of working registers, it takes 2 registers```			
		HR	ROR	DR	K	XR	
		${ }^{\text {Ro }}$	${ }^{\text {Ra3224 }}$	Do		v,z	
		${ }_{83476}$	${ }_{\text {R27319 }}$	01199		$0 \cdot 9$	
		$\bigcirc$	$\bigcirc$	$\bigcirc$		$\bigcirc$	
					0-1		
		$\bigcirc$	$\bigcirc$	$\bigcirc$	0-32510		
		$\bigcirc$	$\bigcirc *$	$\bigcirc$			
		$\bigcirc$	$\bigcirc *$	$\bigcirc$	1-128		
		$\bigcirc$	$\bigcirc *$	$\bigcirc$			


FUN161P   WR-MP	Write Data Record into the MEMORY_PACK   (Write memory pack )	FUN161P   WR-MP
Description	The main	



- When input "INC" = 1, the content of the pointer will be increased by one after the execution of writing, it points to next record.
- If the value of $L$ is equal to 0 or greater than 128 , or the pointed data area over the range, the output "ERR" will be 1, it will not perform the writing operation.




## 7-20-3 Read SD Card (RD-MP)



- If the MEMORY_PACK of the M-Series PLC has stored the data record written by the FUN161 instruction, they can be read out for machine's working through this instruction, it will reduce the tuning time for machine operation.
- When execution control "EN" = 1 or from $0 \rightarrow 1$ ( $P$ instruction), it will perform the data reading, where $B K$ is the block number of the MEMORY_PACK storing the record, Os is the offset of specified block, $\operatorname{Pr}$ is the pointer to point to corresponding data area, $L$ is the quantity of this record, and $D$ is the starting address to stor this reading of record. The access of MEMORY_PACK manipulation adopts the concept of RECORD data structure to implement with.
The working diagram as shown below :

FUN162 P	Read Data Record from the MEMORY_PACK	FUN162 P
RD-MP	(Read memory pack )	RD-MP



- When input "INC"=1, the content of the pointer will be increased by one after the execution of reading, it points to next record.
- If the value of $L$ is equal to 0 or greater than 128 , or the pointed data area over the range, the output "ERR" will be 1, it will not perform the reading operation.

$\begin{gathered} \text { FUN162 P } \\ \text { RD-MP } \end{gathered}$	Read Data Record from the MEM   ( Read memory pack	AORY_PACK		$\begin{array}{r} \text { FUN162 } \\ \text { RD-MP } \end{array}$
Example	Reading the record from block 1 with the different length			
※ It is neces	ssary that correct data in MEMORY_PACK or th   The RECORD starts from R0, the length is 20(R0~R19)   The RECORD starts from R100, the length is 50(R100~R149)   Read $\mathrm{Os}=0 \rightarrow$ $\mathrm{Os}=9999 \rightarrow$ $\mathrm{Os}=10000 \rightarrow$	is example ca   M110   M111   MEMORY_PACK   Block 1   Head of Block 1   The length is 20 of RECORD 0   The length is 20 of RECORD 1   The length is 20 of RECORD 499   The length is 50 of RECORD 0   The length is 50 of RECORD 449	n't execute $\begin{aligned} & \mathrm{Pr}=0 \\ & \mathrm{Pr}=1 \\ & \mathrm{Pr}=499 \\ & \mathrm{Pr}=0 \\ & \mathrm{Pr}=449 \end{aligned}$	orrectly.

## 7-21 In Line Comparison Instruction (FUN170~175)

## 7-21-1 Equal To Compare



$\sum_{\substack{\text { openge } \\ \text { nand }}}^{\substack{\text { Range }}}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	wxo	woo	WM0	wso	$\begin{gathered} \mathrm{TO} \\ \text { Ti03 } \end{gathered}$	$\begin{gathered} c 0 \\ \text { city } \end{gathered}$	$\underset{\substack{\text { Ro } \\ 82 a r s e r}}{ }$	${ }^{\text {R34788 }}$	R35024	R35280	Ra3224	$\underset{\substack{\text { Do } \\ 0}}{0}$	16/32-bit	VR popeg pop
Sa	$\bigcirc$													
Sb	$\bigcirc$													

## Description

- When execution input "EN" =1, this instruction will be executed in signed number to compare Sa with Sb . If $\mathrm{Sa}=\mathrm{Sb}$, the output is 1 ; otherwise the output is 0 .


Description: When $R 0=R 2$ - $R 4=R 6$ and $M 0=1$, the output status of YO is 1 ; otherwise it is 0 . $R 0=R 2 \cdot R 8=R 10$ and $M 1=1$, the output status of $Y 1$ is 1 ; otherwise it is 0 .


Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616 $\geqq$ DR618, or DR612 $\neq$ DR614 and DR620 $\leqq$ DR622, or M200=1and M201=1, and then $M 100=1$, the output status of Y 10 is 1 ; otherwise it is 0 .

## 7-21-2 GREATER THAN COMPARE

$\text { FUN } 1$		GREATER THAN COMPARE   ( Compare whether Sa is greater than Sb )												$71 \text { D }$
Symbol														
$\substack{\text { one } \\ \text { and } \\ \text { nod }}^{\text {a }}$	${ }_{\substack{\text { mod } \\ \text { wxoses }}}$	wro	$\underset{\substack{\text { anco } \\ \text { wrose }}}{\text { and }}$	wion	${ }_{\substack{\text { lio } \\ \text { tios }}}$	${ }_{\substack{c \\ \text { cira }}}$	$\begin{gathered} \text { not } \\ \text { Ru4br } \end{gathered}$	$\underbrace{\text { and }}_{\substack{\text { Repres } \\ \text { Rases }}}$	R35024	$\underset{\substack{\text { asszan } \\ \text { Rasaz }}}{ }$		${ }_{\text {co }}^{0}$	16, K236t	${ }^{\mathrm{V} \mathrm{V}}$
Sa	$\bigcirc$													
Sb	$\bigcirc$													
Description														
- When execution input "EN" $=1$, this instruction will be executed in signed number to compare Sa with Sb. If Sa>Sb, the output is 1 ; otherwise the output is 0 .														
Example 1														

Description: When $\mathrm{M} 10=1$ - $\mathrm{R} 20>\mathrm{R} 22$ or $\mathrm{M} 11=1$, the output status of Y 2 is 1 ; otherwise it is 0 .

## Example 2



Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616 $\geqq$ DR618, or DR612 $=$ DR614 and DR620 $\leqq$ DR622, or M200=1and M201=1, and then M100=1, the output status of Y 10 is 1 ; otherwise it is 0 .

## 7-21-3 LESS THAN COMPARE

FUN172 D	LESS THAN COMPARE   ( Compare whether Sa is less than Sb )												$\begin{aligned} & 172 \text { D } \\ & < \end{aligned}$
Symbol													
$\sum_{\substack{\text { ope. } \\ \text { rande }}}^{\text {Range }}$	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \substack{\text { wro } \\ \text { whros }} \end{gathered}$	$\begin{array}{\|c} \hline \text { wno } \\ \text { wross } \end{array}$	$\begin{gathered} \text { wso } \\ \text { wssos } \end{gathered}$	$\begin{aligned} & \mathrm{TO} \\ & \text { Ti023 } \end{aligned}$	$\begin{gathered} c 0 \\ \text { city } \end{gathered}$	$\begin{gathered} \text { Ro } \\ \text { R34767 } \end{gathered}$	R34768 । R34895	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	R35280 । R43223	$\begin{gathered} \mathrm{R} 43224 \\ \mid \\ \text { R47319 } \end{gathered}$	$\begin{gathered} \hline \text { D0 } \\ \text { \| } \\ \text { D11999 } \end{gathered}$	16/32-bit + numbers	$\begin{aligned} & \mathrm{v}, \mathrm{z} \\ & \text { popap } \end{aligned}$
Sa $\bigcirc$	$\bigcirc$												
Sb $\bigcirc$	$\bigcirc$												
Description													
- When execution input "EN" $=1$, this instruction will be executed in signed number to compare Sa with Sb . If $\mathrm{Sa}<\mathrm{Sb}$, the output is 1 ; otherwise the output is 0 .													
Example 1													
Description: When $\mathrm{M} 10=1$, $\mathrm{R} 20<\mathrm{R} 22$ or $\mathrm{M} 11=1$, the output status of Y 2 is 1 ; otherwise it is 0 .													
FUN172 D	LESS THAN COMPARE   ( Compare whether Sa is less than Sb )												$172 \text { D }$

## Example 2



Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616 $\geqq$ DR618, or DR612 $\neq$ DR614 and DR620 $\leqq$ DR622, or M200=1and M201=1, and then M100=1, the output status of Y 10 is 1 ; otherwise it is 0 .

## 7-21-4 Not Equal To Compare

FUN:	$173 \text { D }$	NOT EQUAL TO COMPARE   ( Compare whether Sa is not equal to Sb )												$\begin{aligned} & \text { N173 D } \\ & \text { <> } \end{aligned}$
Symbol														
EN		173D. Sa<> Sb				-	Sa: Operand A or the starting address of Sa   Sb : Operand B or the starting address of Sb Sa, Sb may combine with V, Z, P0 ~ P9 for indirect addressing application							
$\begin{array}{\|l\|l\|} \hline \text { Rone } \\ \text { Range } \\ \text { Rand } \end{array}$	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ \text { wxios } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { wrios } \end{gathered}$	$\begin{array}{\|c} \hline \text { wno } \\ \text { wrossas } \end{array}$	$\begin{gathered} \text { wsio } \\ \text { wssose } \end{gathered}$	$\begin{aligned} & \mathrm{T} 0 \\ & \mathrm{~T}_{1}^{1023} \end{aligned}$	$\begin{gathered} c 0 \\ c_{127} \\ c \end{gathered}$	${ }_{\substack{\text { R00 } \\ \text { R3467 }}}$		$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \text { । } \\ \text { R43223 } \end{gathered}$	$\begin{aligned} & \text { R43232 } \\ & \text { R49319 } \end{aligned}$	coin		$\begin{aligned} & { }_{p}^{v, z} \\ & \text { popg } \end{aligned}$
Sa	$\bigcirc$													
Sb	$\bigcirc$													

## Description

- When execution input "EN" =1, this instruction will be executed in signed number to compare Sa with Sb . If $\mathrm{Sa} \neq \mathrm{Sb}$, the output is 1 ; otherwise the output is 0 .


## Example 1



Description: When $\mathrm{M} 10=1$, $\mathrm{R} 20 \neq \mathrm{R} 22$ or $\mathrm{M} 11=1$, the output status of Y 2 is 1 ; otherwise it is 0 .


Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616 $\geqq$ DR618, or DR612 $\neq$ DR614 and DR620 $\leqq$ DR622, or M200=1and M201=1, and then $\mathrm{M} 100=1$, the output status of Y 10 is 1 ; otherwise it is 0 .

## 7-21-5 GREATER THAN OR EQUAL TO COMPARE

$\begin{gathered} \text { FUN174 } \\ >= \end{gathered}$	GREATER THAN OR EQUAL TO COMPARE											FUN174 D>=	
Symbol													
EN		74D $>=$	S			Sa: Operand A or the starting address of Sa   Sb : Operand B or the starting address of Sb   Sa - Sb may combine with V , Z - P0 ~ P9 for indirect addressing application.							
$\substack{\text { opee } \\ \text { Rand } \\ \text { Range }}$   Sa	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \substack{\text { woro } \\ \text { whroos }} \end{gathered}$	$\begin{array}{\|c\|c\|c\|} \hline \text { wnoo } \\ \text { wrossas } \end{array}$	$\begin{gathered} \substack{\text { wso } \\ \text { ws.0888 }} \end{gathered}$	$\begin{gathered} \mathrm{TO} \\ \text { Ti02 } \end{gathered}$	$\begin{gathered} c 0 \\ \text { ci29 } \\ \text { c17 } \end{gathered}$	$\begin{gathered} \text { Rol } \\ \text { Ra4767 } \end{gathered}$	$\begin{aligned} & \text { Re3768 } \\ & \text { Re3se } \end{aligned}$	$\begin{gathered} \hline \text { R35024 } \\ \text { । } \\ \text { R35151 } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { Ra32324 } \\ \text { Re42319 } \end{array}$	Do	$\begin{gathered} 16 / 32 \cdot 2 \cdot b) \\ \text { numbers } \end{gathered}$	XR   vope   pop
Sa $\bigcirc$	$\bigcirc$												
Sb $\bigcirc$	$\bigcirc$												
Description													

- When execution input "EN" =1, this instruction will be executed in signed number to compare Sa with Sb . If $\mathrm{Sa} \geqq \mathrm{Sb}$, the output is 1 ; otherwise the output is 0 .


Description: When $\mathrm{M} 10=1$ - $\mathrm{R} 20 \geqq \mathrm{R} 22$ or $\mathrm{M} 11=1$, the output status of Y 2 is 1 ; otherwise it is 0.

FUN174 D   $>=$	GREATER THAN OR EQUAL TO COMPARE	FUN174 D   $>=$
Example 2		



Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616 $\geqq$ DR618, or DR612 $=$ DR614 and DR620 $\leqq$ DR622, or M200=1and M201=1, and then $\mathrm{M} 100=1$, the output status of Y 10 is 1 ; otherwise it is 0 .

## 7-21-6 LESS THAN OR EQUAL TO COMPARE

$\begin{array}{r} \text { FUN17! } \\ =< \end{array}$		LESS THAN OR EQUAL TO COMPARE												N175 D
Symbol														
Sa: Operand A or the starting address of Sa   Sb : Operand B or the starting address of Sb   Sa , Sb may combine with V , Z - P0 ~ P9 for indirect addressing application.														
Range WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR														
$\begin{aligned} & \text { one: } \\ & \text { ond } \\ & \text { and } \end{aligned}$	$\begin{gathered} \text { mxo } \\ \text { wxpo } \end{gathered}$	$\begin{gathered} \text { wro } \\ \text { whros } \end{gathered}$	$\begin{gathered} \text { wwo } \\ \text { whoss } \\ \text { whas } \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { wsises } \end{gathered}$	¢0	$\begin{gathered} c \\ c \\ c \\ c \end{gathered}$	$\begin{gathered} \text { Ro } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \text { Re37788 } \\ & \text { R3.395 } \end{aligned}$	$\begin{gathered} \text { R35024 } \\ \text { \| } \\ \text { R35151 } \end{gathered}$	$\begin{gathered} \text { R35280 } \\ \text { \| } \\ \text { R43223 } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Ra3234 } \\ \text { Req4319 } \end{array}$	-	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$	$\begin{gathered} \mathrm{V}, \mathrm{Z} \\ \mathrm{P0}-\mathrm{Pg} \end{gathered}$
Sa	$\bigcirc$													
Sb	$\bigcirc$													
Description														
- When execution input "EN" $=1$, this instruction will be executed in signed number to compare Sa with Sb . If $\mathrm{Sa} \leqq \mathrm{Sb}$, the output is 1 ; otherwise the output is 0 .														
Example 1														

Description: When $\mathrm{M} 10=1$ - $220 \leqq R 22$ or $\mathrm{M} 11=1$, the output status of Y 2 is 1 ; otherwise it is 0 .

FUN175 $\mathbf{D}$   $=<$	LESS THAN OR EQUAL TO COMPARE	FUN175 D   $=<$

## Example 2



Description: When DR600=DR602 or DR604>DR606, after them DR608<DR610 and DR616 $\geqq$ DR618, or DR612 $\neq$ DR614 and DR620 $\leqq$ DR622, or M200=1and M201=1, and then $\mathrm{M} 100=1$, the output status of Y 10 is 1 ; otherwise it is 0 .

## 7-22 Motion Control Instructions

## 7-22-1 Running motion process (ME_START)

FUN 176   ME_START		Start motion process											FUN 176   ME_START	
Symbol		If different axes should be activated at the same time, do not use the ID repeatedly.												
ID: The ID number of the motion process to be started.   EN: = 1 . Means the motion process defined by the command will be started.   ACT: $=1$. Means the system is running the defined motion process.   ERR: = 1 . Means error is found in the motion process.   DN: $=1$. Means the motion process is completed.														
Relay and Register														
	wx	Wr	WM	Ws	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{array}{\|c} \hline w \times 0 \\ 1 \\ w \times 100 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { wyo } \\ \text { w } \\ \text { w100 } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { wмо } \\ \text { wм910 } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { wso } \\ \text { ws308 } \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { T0 } \\ \text { T1023 } \end{gathered}\right.$	co 1 C1279	$\stackrel{\text { R0 }}{\substack{\text { R34767 }}}$	R34768 R35023	$\begin{aligned} & \text { R35024 } \\ & \text { R35279 } \end{aligned}$	$\left\lvert\, \begin{gathered} R 35280 \\ 84 \\ \text { R43223 } \end{gathered}\right.$	$\left\|\begin{array}{l} \mathrm{R} 43222 \\ \mathrm{R} 47319 \end{array}\right\|$	D0 D1199 9		
ID	$\bigcirc$	1~16	$\bigcirc$											

## Example



- When the execution control "EN" = 1, the motion flow corresponding to the UID will be executed.
- If the ID does not correspond to the motion process, ERR = 1 will be triggered.


## 7-22-2 Stop all motion processes (ME_SYSTOP)

| FUN 177 |
| :---: | :---: | :---: | :---: |
| ME_SYSTOP |$\quad$| FUN 177 |
| :---: |
| Symbol |

- Interrupt all motion processes and stop EtherCAT communication. If you want to restart the process, you need to start the EtherCAT communication in ME_INIT.
- EN = 1: Interrupt all motion processes
- EN = 1: Motion control system emergency emergency stop
- $\mathrm{ACT}=1$ : The system is in emergency stop action
- $E R R=1$ : system emergency stop error
- $\quad \mathrm{DN}=1$ : The system has completed emergency stop


## Example



- When the execution control "EN" = 1, the motion control in execution will be stopped in an emergency.
- If you want to restart the operation after execution, you need to perform initialization and start.


## 7-22-3 Home re-set (ME_HOME)

FUN 178   ME_HOME		Home re-set (ME_HOME)												
Symbol														
AX: Means the axis where the Home re-setting will be executed.														
Relay and Register														
Type	wx	WY	wm	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Range	$\left.\begin{array}{\|c\|} \hline w \times 0 \\ 1 \\ w \times 100 \\ 8 \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline \text { wro } \\ \hline \\ \text { wr100 } \\ 8 \end{array} \right\rvert\,$	$\begin{gathered} \text { Wм0 } \\ \text { wm910 } \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ws0 } \\ \text { ws308 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { то } \\ \text { T1023 } \end{array}$	$\begin{gathered} \text { co } \\ \text { c1279 } \end{gathered}$	$\begin{gathered} \text { RO } \\ \text { R3 } \\ \text { R3467 } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { R34768 } \\ \text { R35023 } \end{gathered}\right.$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \mathrm{R} 35024 \\ \mathrm{R} 35279 \end{array}\right. \\ & \hline \end{aligned}$	$\left\|\begin{array}{\|l\|} \mathrm{R} 35280 \\ \mathrm{R} 43223 \end{array}\right\|$	$\left\lvert\, \begin{array}{\|c} \mathrm{R} 43224 \\ \mathrm{R} 4319 \end{array}\right.$	$\begin{array}{c\|} \hline \text { D0 } \\ 1 \\ \text { D1199 } \\ 9 \end{array}$		$\begin{aligned} & \text { V, Z } \\ & \text { PO } \\ & \text { P9 } \end{aligned}$
AX							$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	1~16	$\bigcirc$
Description														

Specify the motion axis to perform homing.

- $\mathrm{EN}=1$ : trigger homing
- $\mathrm{ACT}=1$ : Return-to-origin is in progress
- $E R R=1$ : Return-to-origin action error
- $\mathrm{DN}=1$ : Return-to-origin is completed
- AX: Axis to execute


## Special register

Axis 1: In return-to-origin operation M10621
Axis 1: Return to origin completed M10622

For the modes and details of the HOME command, please refer to Chapter 10.


- When the execution control "EN" $=1$, the origin return will be performed according to the parameters on the motion axis setting page.


## 7-22-4 Position Control (ME_POS)

Fun179p   ME_POS		Position Control (ME_POS)											Fun179p   ME_POS	
Symbol														
PT: Command number of motion point table   AX: Motion control axis number														
Relay and Register														
Type	wx	WY	wm	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Range	$\begin{gathered} \hline w \times 0 \\ 1 \\ w \times 100 \\ 8 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { wyo } \\ \text { wr100 } \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { wмо } \\ \text { wm910 } \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { wso } \\ 1 \\ \text { ws308 } \\ \hline 8 \\ \hline \end{array}$	$3 \begin{gathered} \mathrm{T} 0 \\ \mathrm{~T} 1023 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { co } \\ 1 \\ \text { C1279 } \end{gathered}\right.$	$\begin{array}{\|c\|c} \text { R00 } \\ 34767 \end{array}$	$\left\|\begin{array}{l} R 34768 \\ R 35023 \end{array}\right\|$	$\begin{array}{l\|l} 8 & \text { R35024 } \\ 3 \\ \text { R35279 } \end{array}$	$\begin{aligned} & 435280 \\ & 843223 \\ & \text { R4323 } \end{aligned}$	$\left\|\begin{array}{l} \mathrm{R} 43224 \\ \mathrm{R} 47319 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { D0 } \\ \text { I } \\ \text { D1199 } \\ \hline 9 \\ \hline \end{array}$		
ID	$\bigcirc$	1~256	$\bigcirc$											
AX	$\bigcirc$	1~16	$\bigcirc$											

## Description

Execute the point table position control instruction.

- $\mathrm{EN}=1$ : trigger position control
- $\mathrm{ACT}=1$ : position control action
- $\mathrm{ERR}=1$ : position control error
- $\mathrm{DN}=1$ : The position control action is completed
- PT: Select the point of the movement point parameter
- $A X$ : Axis to execute

Special registers:

- Axis 1: Position control action M10623
- Axis 1: Position control action completed M10624

Fun179P   ME_POS	Position Control (ME_POS)	Fun179P   ME_POS
Example		



- When the execution control "EN" $=1$, the axis specified by AX will execute the point table with the number specified by PT.
- When the execution control "EN" $=0$, the movement will stop immediately.
- The following table is used as an example. When PT = 1 and $\mathrm{AX}=1$, axis 1 will run according to the parameters in point table 1;
However, if $\mathrm{PT}=2$ and $\mathrm{AX}=1$ was set, it will fail due to the difference from the point table setting, and ERR will be triggered.

	Axis
1	$\mathrm{M}:$ Axis_1
2	$\mathrm{M}:$ Axis_2
3	$\mathrm{M}:$ Axis_1

## 7-22-5 JOG (ME_JOG)

$\begin{aligned} & \text { Fun } 180 \\ & \text { ME_JOG } \end{aligned}$		JOG (ME_JOG)												$\begin{aligned} & \text { Fun } 180 \\ & \text { ME_JOG } \end{aligned}$
Symbol														
AX: Means the axis where JOG action will be executed.   MD: Mode of execution														
						Relay	and R	Register						
Type	wx	wy	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
Range	$\begin{array}{\|c} \hline w \times 0 \\ 1 \\ w x 1 \\ 008 \\ \hline 0 \end{array}$	$\begin{array}{\|c} \hline \text { wro } \\ \text { wro } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { шмо } \\ \text { шм9 } 104 \end{gathered}$	$\begin{gathered} \hline \text { Wso } \\ \text { ws } 308 \\ 88 \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \text { то } \\ \vdots \\ \text { T1023 } \end{gathered}\right.$	$\left\|\begin{array}{c\|} \text { co } \\ \text { c1279 } \end{array}\right\|$	$\begin{gathered} \text { R0 } \\ \text { I } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \mathrm{R} 34768 \\ & \mathrm{R} 35023 \end{aligned}$	$\left.\begin{aligned} & 3 \\ & \hline R 35024 \\ & R 35279 \end{aligned} \right\rvert\,$	$\begin{array}{\|l} \mathrm{R} 35280 \\ \mathrm{R} 43223 \end{array}$	$\begin{array}{\|} \mathrm{R} 43224 \\ \mathrm{R} 47319 \end{array}$	$\left\|\begin{array}{c} \text { D0 } \\ \text { D11999 } \end{array}\right\|$		
AX	$\bigcirc$	1~16	$\bigcirc$											
MD	$\bigcirc$	0~3	$\bigcirc$											
Description														

According to the JOG parameter and mode setting, the specified motion axis executes the JOG function.

- $\mathrm{EN}=1$ : trigger manual control
- $D / R=1$ forward / $=0$ reverse
- $A C T=1$ : JOG action
- $\quad E R R=1$ : JOG error
- $\mathrm{DN}=1$ : JOG action completed
- $A X$ : Axis to execute
- MD: mode $0^{\sim}$ mode 3

Mode 0: Continue to advance at the JOG start speed.
Mode 1: Advance at JOG start speed, advance the jogging distance and then stop.
Mode 2: Start at the JOG start speed, accelerate to the JOG speed with the JOG acceleration and continue moving forward.
Mode 3: Start at the JOG start speed, accelerate to the JOG speed with the JOG acceleration, and stop after moving forward.

Special registers

- Axis 1: JOG action M10625
- Axis 1: JOG completed M10626

Please refer to Chapter 11 for JOG instruction modes and details.

## Example



- When the execution control "EN" = 1, the axis specified by AX will execute the mode specified by MD.
- When the execution control "EN" $=0$, the movement will stop immediately.
- Take the following table as an example. When $\mathrm{AX}=1$ and $\mathrm{MD}=1$, it means axis 1 will run a distance of 100 mm at a speed of $1 \mathrm{~mm} / \mathrm{s}$.

	Axis 1
JOG Start Speed	$1 \mathrm{~mm} / \mathrm{s}$
JOG Speed	$10 \mathrm{~mm} / \mathrm{s}$
JOG Acceleration	$1000 \mathrm{~mm} / \mathrm{s}^{2}$
JOG Deceleration	$1000 \mathrm{~mm} / \mathrm{s}^{2}$
Jog Distance	100 mm

## 7-22-6 Change block parameters (ME_CHGPRM)

FUN181   ME_CHGPR   M	Change block parameters (ME_CHGPRM)		$\begin{gathered} \text { FUN181 } \\ \text { ME_CHGPR } \\ M \end{gathered}$
Symbol			
TM: Flow Block Table PN: The number of blocks S: Item Number PV: Written value			


	Relay and Register								
	芴	HR	IR	OR	SR	ROR	DR	K	XR
		$\begin{array}{\|c} \text { R0 } \\ \text { I } \\ \text { R3476 } \\ 7 \end{array}$	$\begin{gathered} \hline \text { R3476 } \\ 8 \\ 1 \\ \text { R3502 } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { R3502 } \\ 4 \\ 1 \\ \text { R3527 } \\ 9 \end{gathered}$	R3528    0    1    R4322    3	$\begin{array}{\|c\|} \hline \text { R4322 } \\ 4 \\ 1 \\ \text { R4731 } \\ 9 \\ \hline \end{array}$	$\begin{array}{\|c} \text { D0 } \\ \text { } \\ \text { D1199 } \\ 9 \end{array}$		$\begin{gathered} V, Z \\ P O \sim P 9 \end{gathered}$
	TM							0～128	
	PN							1～4096	
	S	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	0～50	$\bigcirc$
	PV	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\begin{gathered} \hline 0 \sim 214748264 \\ 7 \\ \hline \end{gathered}$	$\bigcirc$
Description									

［Fun181 Change Motion Control Parameters］is used to change a single or a few motion control parameters．If you need to read or write a large number of motion control parameters，you can use［Fun188 Recipe Read］and［Fun189 Recipe Write］．
－Operands
TM table number： 0 point table， 1 axis table， 2 synchronization table， 128 flow table PN point number：Correspond to different types of numbers according to the table to be modified by TM，point table number，axis number，process block number S item number：please refer to the table below PV write value：the value to be written，fixed Double Word．
－When the execution control［EN］is triggered by the upper differential，Fun181 will write the PV value into the specified motion control parameter
－When the execution control［EN］is triggered by the lower differential，all output indications are reset．
－When writing motion control parameters，if there is an error，the output indication［ERR］ will be ON．
－When the writing of motion control parameters is completed，the output indication【DN】 ON．
Example


- When M1000 OFF $\rightarrow$ ON, change the point table parameters (TM: 0 point table, PN: 1 point table $1, \mathrm{~S}: 2$ spindle coordinates, PV: change to 1000.000 mm ), and the spindle movement distance of point table 1 is changed to 1000.000 mm .


## 7-22-7 Pause Motion Flow



## Description

Pause the motion process of the specified ID, and stop after executing the current process block, To resume a paused motion process, you can use Fun 183 ME_RESUME to resume execution.

- $\mathrm{EN}=1$ : Stop entering the next step after executing the current process block
- $\mathrm{ACT}=1$ : pause action
- $E R R=1$ : timeout error
- $\quad D N=1$ : Pause completed
- ID: UID of the motion process to be paused

- When the execution control "EN" = 1, it will pause and not execute the next step after executing the current motion flow block.


## 7-22-8 Resume Motion Process (RESUME)

FUN 183 ME RESUME	Resume Motion Process (RESUME)											$\begin{gathered} \text { FUN } \\ \text { ME_RE } \end{gathered}$	183   SUME
Symbol													
ID: Means the motion process to be resumed.													
Relay and Register													
	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	WYo   1   WY100   8	Wм0   1   Wм910   4	$\begin{array}{\|c\|} \hline \text { wso } \\ \text { I } \\ \text { wS308 } \\ 8 \\ \hline \end{array}$		c0	$\begin{gathered} \mathrm{RO} \\ \text { I } \\ \mathrm{R} 346 \\ 7 \\ \hline \end{gathered}$	R3476   8   1   R3502   3	R3502   4   1   R3527   9	R3528   0   1   R4322   3	R4322 4 1 R4731 9 9	D0   D   D1999   9		
ID	$\bigcirc$	-32767~32767	$\bigcirc$										
Description													
Resume the paused or interrupted motion process and continue execution.   EN = 1: resume motion flow   $\mathrm{ACT}=1$ : resume motion flow in action   ERR = 1: Resume movement flow error   DN = 1: The motion flow resume is completed													



- When the execution control "EN" = 1, the motion process suspended due to the execution of Fun182 (ME_PAUSE) or Fun184 (ME_HALT) will be resumed.


## 7-22-9 Motion Process Halt (ME_HALT)

FUN 184   ME_HAL		Motion Process Halt (ME_HALT)											FUN   ME	$184$ ALT
Symbol														
ID: Means the motion process to be suspended.														
Relay and Register														
	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
$\begin{array}{ll} 0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & \\ 0 \end{array}$	$\begin{array}{\|c} \hline \text { wxo } \\ 1 \\ \text { wx100 } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { WYo } \\ 1 \\ \text { WY100 } \\ 8 \end{gathered}$	$\begin{gathered} \text { WM0 } \\ 1 \\ \text { WM910 } \\ 4 \end{gathered}$	$\begin{gathered} \text { wso } \\ 1 \\ \text { ws308 } \\ 8 \end{gathered}$	$\begin{array}{\|c\|c} \mathrm{TO} \\ 1 \\ \mathrm{~T} 1023 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { co } \\ 1 \\ \text { C1279 } \end{gathered}\right.$	$\begin{gathered} \text { RO } \\ 1 \\ \text { R3476 } \\ 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { R3476 } \\ 8 \\ 1 \\ \text { R3502 } \\ 3 \\ \hline \end{array}$	$\begin{gathered} \text { R3502 } \\ 4 \\ 1 \\ \text { R3527 } \\ 9 \end{gathered}$	$\begin{gathered} \mathrm{R} 3528 \\ 0 \\ 1 \\ \text { R4322 } \\ 3 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline R 4322 \\ 4 \\ 1 \\ \mathrm{R} 4731 \\ 9 \\ \hline \end{array}$	$\begin{array}{\|c} \text { D0 } \\ \text { I } \\ \text { D1199 } \\ 9 \\ \hline \end{array}$		V, Z $\mathrm{PO} \sim$ $\mathrm{P9}$
ID	$\bigcirc$	-32767~32767	$\bigcirc$											
Description														

Immediately stops the currently executing process block, If you want to continue the stopped motion process, you can use Fun183 ME_RESUME to resume execution.

- EN = 1: Halt motion process
- $\mathrm{ACT}=1$ : Halt action
- $\mathrm{ERR}=1$ : Halt error
- DN = 1: Halt complete
- ID: UID of the motion process to be interrupted



## 7-22-10 Reset Motion Alarm (ME-RSTALM)

| FUN185 <br> ME_RSTALM | Reset Motion Alarm (ME_RSTALM) | FUN185 <br> Symb_RSTALM |
| :---: | :---: | :---: | :---: |
| Symbol |  |  |

Clears all motion sequences and driver error alerts; however, the communication alarm of the drive cannot be cleared by this command and needs to be powered on again.

- $\mathrm{EN}=1$ : Upper edge trigger clears motion error alarm
- $\mathrm{ACT}=1$ : Clear motion error alarm action
- $E R R=1$ : Clear motion error alarm error
- $\quad D N=1$ : Clear motion error alarm completed

Example


- When the execution control "EN" = 1 , it will clear the motion process and errors occurred in the driver.


## 7-22-11 Motion Process Terminate (ME_STOP)

FUN 186   ME_STOP	Stop Motion Process (ME_STOP)												$\begin{aligned} & 186 \\ & \text { STOP } \end{aligned}$
Symbol													
Relay and Register													
ग ${ }^{\text {J }}$ Wx	wy	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{array}{\|c\|c\|} \hline \text { wro } \\ \text { wrioo } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Хмо } \\ \text { ' } \\ \text { wм910 } \\ 4 \\ \hline \end{array}$	$\begin{gathered} \text { wso } \\ \text { ws } 308 \\ 8 \\ \hline \end{gathered}$		c0	$\begin{array}{\|c\|} \hline \text { R0 } \\ 17376 \\ 7 \\ \hline \end{array}$	$\begin{gathered} \mathrm{R} 3476 \\ 8 \\ 1 \\ \text { R3502 } \\ 3 \\ \hline \end{gathered}$	6R3502	$\begin{array}{\|c\|} \hline \text { R3528 } \\ 0 \\ 14322 \\ \hline \\ \hline \end{array}$	R4322 4 1 R4731 9 9	D0   ¢1999		$\mathrm{V}, \mathrm{Z}$ $\mathrm{PO} \sim \mathrm{Pg}$
ID 0	$\bigcirc$	-32767~32767	$\bigcirc$										
Description													
Immediately end the motion process of the specified ID.   When execution of this instruction is complete, ME_RESUME cannot be used to resume execution. Need to use ME_START to restart the process.   $\mathrm{EN}=1$ : The upper edge triggers the motion process to stop   $\mathrm{ACT}=1$ : The stop of the motion process is in motion   ERR = 1: Motion process stop error   DN =1: The motion process stop is completed													
Example													



- When the execution control "EN" = 1, the motion process of the specified ID will stop immediately.


## 7-22-12 Servo Initialization (ME_INT)

FUN187   ME_INIT		Servo Initialization												$\begin{aligned} & \text { UN187 } \\ & \text { ME_INIT } \end{aligned}$
Symbol														
						No operands								
Relay and Register														
J	wx	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{array}{\|c\|} \hline w \times 0 \\ 1 \\ w \times 100 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { wro } \\ 1 \\ \text { wr100 } \\ \hline \end{array}$	$\begin{gathered} \text { Wм0 } \\ \text { wm910 } \\ 4 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { wso } \\ \text { ws } 308 \\ 8 \\ \hline \end{array}$	$\left\|\begin{array}{c\|} \text { T0 } \\ \text { T1023 } \end{array}\right\|$	$\left\lvert\, \begin{array}{c\|} \text { co } \\ \text { c1279 } \end{array}\right.$	$\begin{gathered} \text { RO } \\ \text { R } \\ \text { R34767 } \end{gathered}$	$\begin{gathered} \mathrm{R} 34768 \\ 1 \\ \mathrm{R} 35023 \end{gathered}$	$\begin{aligned} & \mathrm{R} 35024 \\ & \mathrm{R} 35279 \end{aligned}$	$\begin{aligned} & \text { R35280 } \\ & \text { R43223 } \end{aligned}$	$\left\{\begin{array}{l} \mathrm{R} 43224 \\ \mathrm{R} 47319 \end{array}\right.$	$\begin{array}{\|c\|c\|} \hline \text { DO } \\ \text { D1199 } \\ \hline \end{array}$		$\left\|\begin{array}{c} v, z \\ p o \sim p g \end{array}\right\|$
ID	$\bigcirc$	1~16	$\bigcirc$											
Description														

- If you want to control the servo through EtherCAT communication, you must execute this command before executing any motion control.
- If you want to use Fun 235 to convert the physical axis to the imaginary axis, it must be executed before this command.
- $\mathrm{EN}=1$ : Start motion control initialization (trigger condition supports up and down differential input)
- $\quad \mathrm{ACT}=1$ : Motion control initialization action
- $E R R=1$ : Motion control initialization error
- $\quad \mathrm{DN}=1$ : Motion control initialization is complete


## Example



- When the execution control "EN" $=1$, the motion control function initialization action will be executed.
- If there is no response during execution, please confirm whether the sports link setting is consistent with the actual link.
- After initialization, the servo needs to be turned on to continue subsequent operations, such as all axes enable (Servo on) register (M10520).


## 7-22-13 Recipe Reading (ME_RCPR)



- [Fun188 Recipe Read] and [Fun189 Recipe Write] are used to read or write a large number of motion cor you can use [Fun181 Change Motion Control Parameters] or [Fun198 Mapping Table].
- Parameters can only be read when the axis stops.
- Operands

Md mode: 0 use PLC register
D formula starting register: the initial address of the register to be stored after reading the formula tabl Gp reads the column of the recipe table: reads the column of the recipe table, 0 reads all

- When the execution control [EN] is triggered by the upper differential, Fun188 will read the specified re When the execution control [EN] is triggered by the lower differential, all output indications are reset.
- When the recipe is read, the output indication [ACT] is ON.
- When reading the recipe, if there is an error, the output indication [ERR] will be ON.
- When the reading of the recipe is completed, the output indication [DN] ON.


## Recipe Table

【 Project Management】＞【Motion Control】＞【Motion Recipe】

運動配方表 $\times$					
	表	索引	長度	起始位址	結束位址
1	點表	1	1	Ro	R49
2	軸表	1	1	R50	R119
3	同步表	1	1	R120	R269

－Motion Recipe table
Tables：Point table，Axis table，Synchronization table
Index：Point table（number of points），Axis table（number of axes），Synchronization table （number of axes）
Length：Continuous point table or continuous axis
Start address：The start address of the register for reading and writing recipes
－Please refer to the following table for the definition of the register value of the motion recipe table

## Recipe Point Table

序號	項目	資料大小	資料類型	長度	定義
R＋0	運行模式	WORD	INT	1	0．末使用   1．單軸／絕對   2．單軸／相對   3．直線（2軸）／絕對   4．直線（ 2 軸）／相對   5．直線（3軸）／絕對   6．直線（3軸）／相對   7．直線（4軸）／絶對   8．直線（4軸）／相對   9．圓弧／絕對   10．圓弧／相對   11．螺旋／絶對   12．螺旋／相對   13．單軸速度
R＋1	加速類型	WORD	INT	1	$\begin{aligned} & \text { 0. T曲線 } \\ & \text { 1. S曲線 } \end{aligned}$
R＋2	主軸	WORD	INT	1	$\begin{aligned} & 1^{\sim} 16 \\ & \text { 不使用 }=0 \end{aligned}$
R＋3	補間軸1	WORD	INT	1	$\begin{array}{\|l\|} \hline 1^{\sim} 16 \\ \text { 不使用 }=0 \\ \hline \end{array}$
R＋4	補間軸2	WORD	INT	1	$\begin{aligned} & \hline 1^{\sim} 16 \\ & \text { 不使用 }=0 \\ & \hline \end{aligned}$
R＋5	補間軸 3	WORD	INT	1	$\begin{aligned} & \text { 1~16 } \\ & \text { 不使用 }=0 \\ & \hline \end{aligned}$
R＋6	目標位置主軸	DWORD	INT	2	精度：小數點位置（可負數）
R＋8	目標位置補間軸 1	DWORD	INT	2	精度：小數點位置（可負數）
R＋10	目標位置補間軸 2	DWORD	INT	2	精度：小數點位置（可負數）
R＋12	目標位置補間軸 3	DWORD	INT	2	精度：小數點位置（可負數）
R＋14	速度	DWORD	INT	2	精度：小數點位置（只能正數）
R＋16	加速度	DWORD	INT	2	精度：小數點位置（只能正數）
R＋18	滅速度	DWORD	INT	2	精度：小數點位置（只能正數）
R＋20	S 加速度曲線	WORD	INT	1	精度： 0.1
R＋21	S 減速度曲線	WORD	INT	1	精度： 0.1
R＋22	圓弧模式	WORD	INT	1	0．通過點   1．中心   2．半徑
R＋23	目弧方向	WORD	INT	1	0．逆時針   1．順時針
R＋24	圓弧（通過點／圓心）X 座标	DWORD	INT	2	精度：小數點位置（可負數）
R＋26	圓弧（通過點／圓心）Y 座標	DWORD	INT	2	精度：小數點位置（可負數）
R＋28	圓弧半徑	DWORD	INT	2	精度：小數點位置（只能正數）
R＋30	輔助半徑	DWORD	INT	2	精度：小數點位置（只能正數）
R＋32	待機時間	DWORD	UINT	2	單位 ms
R＋34	連續點	WORD	INT	1	$\begin{aligned} & \begin{array}{l} 1 \sim 1024 \\ \text { 結束 }=0 \end{array} \end{aligned}$
R＋35	圓弧圈數	WORD	UINT	1	0～65535
R＋36	連續模式	WORD	INT	1	0．待機   1．下一點速度連續   2．當前點速度連續   3．開始速度連續
R＋42	圓弧（通過點／圓心） C 座標	DWORD	INT	2	精度：小數點位置（可負數）


Recipe Axis Table				
序號	項目	資料大小	資料類型	長度 定義
R＋0	編碼器類型	WORD		110 0．增量型 1 （絶對型
R＋1	單位	WORD		$1 \begin{aligned} & \text { 0. PLS } \\ & \text { 1. } \mathrm{mm} \\ & \text { 2. deg } \\ & \text { 3. inch } \end{aligned}$
R＋2	小數點位置	WORD		11000.1   100.0 .1   10.0 .01   1.0 .001
R＋3	每圈脈波數	DWORD		2精度：小數點位置
R＋5	每圈單位長度	DWORD		2精度：小數點位置
R＋7	速度單位	WORD		$\begin{aligned} & \text { 0. PLS/Sec } \\ & \text { 1. } 1 \text { PLS/min } \\ & \text { 2. RPM } \end{aligned}$
R＋8	速度增益	DWORD		2精度： 0.001
R＋10	開始速度	DWORD		2精度：小數點位置
R＋12	最大馬達速度	DWORD		2 精度： 1
R＋14	預設加速度	DWORD		2精度：小數點位置
R＋16	預設減速度	DWORD		2精度：小數點位置
R＋18	軟限制＋	DWORD		$2 \text { 2精度: 小數點位置 }$
R＋20	軟限制－	DWORD		2精度：小數點位置
R＋22	跟蹤誤差容許範園	DWORD		2精度：小數點位置
R＋24	跟跐誤差容許時間	DWORD		2 單位ms
R＋26	定位完成容許誤差	DWORD		2精度：小數點位置
R＋28	定位完成容許時間	DWORD		2 單位ms
R＋30	最大馬達扭矩	WORD		1精度： 0.1
R＋31	最大扭矩限制＋	WORD		1精度： 0.1
R＋32	最大扭矩限制－	WORD		1精度： 0.1
R＋41	停止模式	WORD		1 5．減速停止
R＋42	停止減速度	DWORD		2精度：小數點位置
R＋44	復歸模式	WORD		99．當前位置為原點   100．Dog Forward   101．近點復歸   1 102．Dog－z－sig Forward   103．Dog－z－sig   Backward
R＋45	復歸 10 來源	WORD		$\begin{aligned} & \text { 10. 從伺服驅動器 } \\ & \text { 1. 從PLC } \end{aligned}$
R＋46	復歸開始方向	WORD		$1{ }^{1} \begin{aligned} & \text { 0．負方向 } \\ & 1 .\end{aligned}$
R＋47	原點復歸偏移	DWORD		2樍度：小數）點位置（可
R＋49	復歸搜尋速度	DWORD		2精度：小數點位置
R＋51	復歸爬行速度	DWORD		2精度：小數點位置
R＋53	復㴆减速度	DWORD		2精度：小數點位置
R＋55	極限開關－位元	WORD		1
R＋56	極限開關＋位元	WORD		1
R＋57	原點開關位元	WORD		1
R＋58	原點零點訊號數	DWORD		2
R＋60	JOG 啟動速度	DWORD		2精度：小數點位置
R＋62	JOG 速度	DWORD		2精度：小數點位置
R＋64	JOG 加速度	DWORD		2精度：小數點位置
R＋66	JOG 減速度	DWORD		2精度：小數點位置
R＋68	寸動距離	DWORD		2精度：小數點位置

## Recipe Synchronous Table

序號	項目	資料大小	資料類型	長度	定義
R＋0	輸入軸座標單位	WORD		1	
R＋1	輸入軸小數點位置	WORD		1	
R＋2	輸入軸過期	DWORD		2	精度：輸入軸小數點位置
R＋4	減速停止滑動時間	DWORD		2	
R＋6	輸入軸相位初始化方法	WORD		1	
R＋7	同步主軸相位預設值	DWORD		2	精度：輸入軸小數點位置
R＋9	相位補債後主軸相位預設值	DWORD		2	精度：輸入軸小數點位置
R＋11	主離合器輸入項位預設值	DWORD		2	精度：輸入軸小數點位置
R＋13	輔助離合器輸入相位預設值	DWORD		2	精度：輸入軸小數點位置
R＋15	凸輪輸入軸相位初始化方法	WORD		1	
R＋16	主離合器輸出相位預設值	DWORD		2	精度：輸入軸小數點位置
R＋18	輔助離合器輸出相位預設值	DWORD		2	精度：輸入軸小數點位置
R＋20	保留	DWORD		2	
R＋22	凸輪輸入相位預設值	DWORD		2	精度：輸入軸小數點位置
R＋24	凸輪輸出基準座標	DWORD		2	精度：輸入軸小數點位置
R＋26	主軸1選擇輸入軸	WORD		1	
R＋27	主軸1外部參照編號	WORD		1	
R＋28	主軸1防止逆轉	WORD		1	
R＋29	主軸 1 座標轉換設定	WORD		1	
R＋30	主軸 1 座標轉換分子	DWORD		2	
R＋32	主軸 1 座標轉換分母	DWORD		2	
R＋34	主軸2選臎輸入軸	WORD		1	
R＋35	主軸 2 外部參照編號	WORD		1	
R＋36	主軸 2 防止逆轉	WORD		1	
R＋37	主軸 2 座標轉換設定	WORD		1	
R＋38	主軸 2 座標轉換分子	DWORD		2	
R＋40	主軸 2 座標轉換分母	DWORD		2	
R＋42	輔助軸選䛭輸入軸	WORD		1	
R＋43	輔助軸外部參照編號	WORD		1	
R＋44	輔助軸防止逆轉	WORD		1	
R＋45	輔助軸座標轉換設定	WORD		1	
R＋46	輔助軸座標轉換分子	DWORD		2	
R＋48	輔助軸座標轉換分母	DWORD		2	
R＋50	主軸相位補償指令量	DWORD		2	精度：輸入軸小數點位置
R＋52	主軸相位補偵更改模式	WORD		1	
R＋53	主軸相位補償更改時間	DWORD		2	
R＋55	輔助軸相位補傊指令量	DWORD		2	精度：輸入軸小數點位置
R＋57	輔助軸相位補償更改模式	WORD		1	
R＋58	輔助軸相位補偵更改時間	DWORD		2	
R＋60	可變䛬輪比分子	DWORD		2	
R＋62	可變齒輪比分母	DWORD		2	
R＋64	可變䓵輪比更改模式	WORD		1	
R＋65	可變齔輪比更改時間	DWORD		2	
R＋67	主離合器ON 條件	WORD		1	
R＋68	主離合器 ON 設定值	DWORD		2	精度：輸入軸小數點位置
R＋70	主離合器ON 延㜊	DWORD		2	精度：輸入軸小數點位置
R＋73	主離合器 ON 連接方式	WORD		1	
R＋75	主離合器ON 滑動曲線	WORD		1	
R＋78	主離合器 ON 滑動時間	DWORD		2	
R +80	主離合器 ON 隨動時間	DWORD		2	
R＋82	主離合器ON 隨動量	DWORD		2	精度：輸入軸小數點位置
R＋84	主離合器 OFF 條件	WORD		1	
R＋85	主離合器 OFF 設定值	DWORD		2	精度：輸入軸小數點位置
R＋87	主離合器 OFF 延幄	DWORD		2	精度：輸入軸小數點位置
R＋90	主離合器 OFF 連接方式	WORD		1	
R＋92	主離合器 OFF 滑動曲線	WORD		1	
R＋95	主離合器 OFF 滑動時間	DWORD		2	
R＋97	輔助離合器 ON 條件	WORD		1	
R＋98	輔助離合器ON 設定值	DWORD		2	精度：輸入軸小數點位置
R＋100	輔助離合器ON 延遅	DWORD		2	精度：輸入軸小數點位置
R＋103	輔助離合器 ON 連接方式	WORD		1	
R＋105	輔助離合器ON 滑動曲線	WORD		1	
R＋108	輔助離合器ON 滑動時間	DWORD		2	
R＋110	輔助離合器 ON 隨動時間	DWORD		2	
R＋112	輔助離合器 ON 隨動量	DWORD		2	精度：輸入軸小數點位置
R＋114	輔助離合器 OFF 條件	WORD		1	
R＋115	輔助離合器 OFF 設定值	DWORD		2	精度：輸入軸小數點位置
R＋117	輔助離合器 OFF 延塀	DWORD		2	精度：輸入軸小數點位置
R＋120	輔助離合器 OFF 連接方式	WORD		1	
R＋122	輔助離合器 OFF 滑動曲線	WORD		1	
R＋125	輔助離合器 OFF 滑動時間	DWORD		2	
R＋132	步進角補償基準速度	DWORD		2	精度：輸入軸小數點位置
R＋134	步進角補償基準量	DWORD		2	精度：輸入軸小數點位置
R＋136	步進角補償更改方式	WORD		1	
R＋137	步進角補償更改時間	DWORD		2	
R＋139	凸輪資料編號	WORD		1	
R＋140	凸輪行程	DWORD		2	精度：軸表小數點位置
R＋142	同步接點編號	WORD		1	
R＋143	輸出濾波器時間常數	DWORD		2	

## Example



- When M1000 is from OFF $\rightarrow$ ON, read all recipe tables and store them in R1000.
- Read the parameters of PLC point table 1 and store them in R1000~R1049
- Read the parameters of the PLC axis table (axis 1) and store them in R1050~R1119
- Read the parameters of the PLC synchronization table (axis 1 ) and store them in R1120~R1269

| FUN189 |
| :---: | :---: | :---: |
| ME＿RCPW |$\quad$ Motion Control Recipe Writing（ME＿RCPW） | FUN189 |
| :---: |
| ME＿RCPW |

Find in＂Project＂－＞＂Motion recipe＂


Take the target position of the point table as an example for mapping；the following figure is the setting page：

```
主單元0 }\times\mathrm{ 轋動點參數 }\times 運動配方表 >
```

	表	索引	長度	起始位址	結束位址
1	點表	1	1	R0	R49

The following is a sample program using the point table as an example：


## 7－22－14 Motion Control Recipe Writing（ME＿RCPW）


－［Fun188 Recipe Read］and［Fun189 Recipe Write］are used to read or write a large number of motion cor you can use［Fun181 Change Motion Control Parameters］or［Fun198 Mapping Table］．
－Parameters can only be written when the axis stops．
－Operands
Md mode： 0 use PLC register
D recipe starting register：the starting address of the register to be written into the recipe table Gp writes the column of the formula table：writes the column of the recipe table， 0 writes all
－When the execution control［EN］is triggered by the upper differential，Fun188 will write the specified $r$ When the execution control［EN］is triggered by the lower differential，all output indications are reset
－When writing into the recipe，the output indication［ACT］ON．
－When writing in the recipe，if there is an error，the output indication［ERR］ON．
－When writing the recipe is completed，the output indication［DN］ON．

## Recipe Table

【 Project Management】＞【 Motion Control】＞【Motion Recipe】

運動配方表×

	表	索引	長度	起始位址	結束位址
1	點表	1	1	R0	R49
2	軸表	1	1	R50	R119
3	同步表	1	1	R120	R269

－Motion Recipe table
Tables：Point table，Axis table，Synchronization table
Index：Point table（number of points），Axis table（number of axes），Synchronization table（number of ax Length：continuous point table or continuous axis

Start address：The start address of the register for reading and writing recipes
－Please refer to the following table for the definition of the temporary register value of the motion recip

## Recipe Point Table

R＋0	Operating   mode	WORD	INT	1	0．Not   1．Unia   2．Unia   3．Linea   4．Strai   axes）／r   5．Linea   6．Linea   7．Linea   8.


						not use
	R+4	Tween axis 2	WORD	INT	1	$1 \sim 16$   not use
	R+5	Tween axis 3	WORD	INT	1	
	R+6	Target   position   Spindle	DWOR   D	INT	2	Precisic   positio   Can be
	R+8	Target   Position   Tween axis 1	DWOR   D	INT	2	Precisic   positio   Can be
	R+10	Target   Position   Tween axis 2	DWOR   D	INT	2	Precisic   positio   Can be
	R+12	Target   position   Tween axis 3	DWOR   D	INT	2	Precisic   positio   Can be
	R+14	Speed	DWOR   D	INT	2	Precisic positio
	R+16	Acceleration	DWOR   D	INT	2	Precisic positio
	R+18	Deceleration	DWOR   D	INT	2	Precisic positio
	R+20	S acceleration curve	WORD	INT	1	Accurad

Chapter 7 Advanced Function Instructions


						2. Cont   point s   3. Cont   speed
	$R+42$	Arc (through point/center ) Z coordinate	DWOR   D	INT	2	Precisic   positio   Can be


FUN189   ME RCPW	Motion Control Recipe Writing (ME_RCPW)				FUN189   ME_RCPW
Recipe Axis Table					
R+0	Encoder type	WORD	1	$\begin{aligned} & 0=\text { Incremental } \\ & 1 \text { = Absolute } \end{aligned}$	
R+1	Unit	WORD	1	0. PLS   1. mm   2. deg   3. inch	
R+2	Decimal place	WORD	1	$\begin{array}{ll} 1000: 1 \\ 100 & : 0.1 \\ 10 & : 0.01 \\ 1 & : 0.001 \end{array}$	
R+3	Pulse number per revolution	DWORD	2	Precision: decimal place	
R+5	Length of each circle	DWORD	2	Precision: decimal place	
R+7	Speed unit	WORD	1	0. PLS/Sec   1. PLS/min   2. RPM	
R+8	Speed gain	DWORD	2	Precision : 0.001	
R+10	Starting speed	DWORD	2	Precision: decimal place	
$\mathrm{R}+12$	Maximum motor speed	DWORD	2	Precision : 1   In the unit of RPM	
R+14	Preset acceleration	DWORD	2	Precision: decimal place	
R+16	Default deceleration	DWORD	2	Precision: decimal place	
R+18	Soft limit +	DWORD	2	Can be negative	
R+20	Soft limit -	DWORD	2	Can be negative	
R+22	Tracking error acceptable	DWORD	2	Precision: decimal place	


R+30	Maximum Motor Torque	WORD	1	Precision : 0.1
$R+31$	Maximum torque limit +	WORD	1	Precision : 0.1
R+32	Maximum torque limit -	WORD	1	Precision : 0.1
R+41	Stop mode	WORD	1	5. Deceleration stop   7. Immediate halt
R+42	Stop deceleration	DWORD	2	Precision: decimal place
R+44	Recovery mode	WORD	1	99. Current position is the origin   100. Dog Forward   101. Near point return   102. Dog-z-sig Forward   103. Dog-z-sig Backward
R+45	IO source reset	WORD	1	0 . From the servo driver   1. From the PLC
R+46	start direction reset	WORD	1	0. Negative direction   1. Positive direction
R+47	Return to origin offset	DWORD	2	Precision: decimal place   Can be negative
R+49	Search speed reset	DWORD	2	Precision: decimal place
R+51	Crawl speed reset	DWORD	2	Precision: decimal place
R+53	Deceleration reset	DWORD	2	Precision: decimal place
R+55	Limit Switch - Bit	WORD	1	


R+56	Limit switch + bit	WORD	1	
R+57	Origin switch bit	WORD	1	
R+58	Origin zero signal   number	DWORD	2	
R+60	JOG start speed	DWORD	2	Precision: decimal place
R+62	JOG speed	DWORD	2	Precision: decimal place
R+64	JOG Acceleration	DWORD	2	Precision: decimal place
R+66	JOG deceleration	DWORD	2	Precision: decimal place
R+68	Inching distance	DWORD	2	Precision: decimal place


$\begin{gathered} \text { FUN1 } \\ \text { ME_R } \end{gathered}$	, Motion Control Recipe Writing (ME_RCPW)					FUN189   ME RCPW
Recipe Synchronization Table						
R+0	Input axis coordinate unit		WORD	1		
R+1	Input axis decimal place		WORD	1		
R+2	Input shaft cycle		DWOR   D	2	Accura   axis	ace of the in
R+4	Decelerate stop sliding time		$\begin{aligned} & \text { DWOR } \\ & \text { D } \end{aligned}$	2		
R+6	Input shaft phase initialization method		WORD	1		
R+7	Synchronous spindle phase preset		DWOR   D	2	Accurac axis	lace of the in
R+9	Spindle phase preset value after phase compensation		DWOR   D	2	Accurac axis	lace of the in
R+11	Main clutch input bit preset value		DWOR   D	2	Accurac axis	lace of the in
R+13	Auxiliary Clutch Input Phase Preset		DWOR   D	2	Accurac axis	lace of the in
R+15	Cam input shaft phase initialization method		WORD	1		
R+16	Main clutch output phase preset value		DWOR   D	2	Accurac axis	lace of the in
R+18	Auxiliary clutch output phase preset value		DWOR   D	2	Accura axis	lace of the in
R+20	Reserved		DWOR   D	2		
R+22	Cam input phase preset		DWOR	2	Accurac	lace of the in


$R+32$	Spindle 1 coordinate conversion denominator	DWORD	2	
$R+34$	Spindle 2 input axis selection	WORD	1	
$R+35$	Spindle 2 Xref Number	WORD	1	
$R+36$	Spindle 2 reverse rotation prevention	WORD	1	
$R+37$	Spindle 2 coordinate conversion setting	WORD	1	
$R+38$	Spindle 2 coordinate conversion numerator	DWORD	2	
$R+40$	Spindle 2 Coordinate Conversion Denominator	DWORD	2	
$R+42$	Auxiliary axis selection input axis	WORD	1	
$R+43$	Auxiliary Axis X-ref Number	WORD	1	
$R+44$	Auxiliary shaft prevents reverse rotation	WORD	1	
$R+45$	Auxiliary axis coordinate conversion setting	WORD	1	
$R+46$	Auxiliary Axis Coordinate conversion Molecule	DWORD	2	
$R+48$	Auxiliary axis coordinate conversion	DWORD	2	
$R+50$	Spindle phase compensation command amount	DWORD	2	Accuracy: decimal pla
input axis				
$R+52$	Spindle phase compensation mode change	WORD	1	
$R+53$	Spindle phase compensation time change	DWORD	2	
$R+55$	Auxiliary axis phase compensation command   amount	DWORD	2	Accuracy: decimal pla
input axis				


R+62	Variable gear ratio denominator	DWORD	2	
R+64	Variable gear ratio mode change	WORD	1	
R+65	Variable gear ratio time change	DWORD	2	
R+67	Master clutch ON condition	WORD	1	
R+68	Master clutch ON setting	DWORD	2	Accuracy: decimal place of the input axis
R+70	Master Clutch ON delay	DWORD	2	Accuracy: decimal place of the input axis
R+72	Reserved	WORD	1	
R+73	Main clutch ON connection method	WORD	1	
R+74	Reserved	WORD	1	
R+75	Master Clutch ON slip curve	WORD	1	
R+76	Reserved	DWORD	2	
R+78	Master clutch ON slipping time	DWORD	2	
R+80	Main clutch ON follow-up time	DWORD	2	
R+82	Main clutch ON following momentum	DWORD	2	Accuracy: decimal place of the input axis
R+84	Master clutch OFF condition	WORD	1	
R+85	Master clutch OFF setting value	DWORD	2	Accuracy: decimal place of the input axis
R+87	Master Clutch OFF delay	DWORD	2	Accuracy: decimal place of the input axis
R+87	Reserved	WORD	1	
R+90	Main clutch OFF connection method	WORD	1	
R+91	Reserved	WORD	1	
R+92	Master Clutch OFF Slip Curve	WORD	1	

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { R+95 } & \text { Main clutch OFF slipping time } & \begin{array}{l}\text { DWOR } \\ \text { D }\end{array} & 2 & \\ \hline \text { R+97 } & \text { Auxiliary clutch ON condition } & \text { WORD } & 1 & \\ \hline \text { R+98 } & \text { Auxiliary clutch ON set value } & \text { DWOR } & 2 & \text { Accuracy: decimal place of } \\ \text { D }\end{array}\right]$

$R+136$	Change of step angle compensation   method	WORD	1	
$R+137$	Step angle compensation time   change	DWOR   D	2	
$R+139$	Cam Profile No.	WORD	1	
$R+140$	Cam lift	DWOR   D	2	Accuracy: decimal   place in the axis   table
$R+142$	Synchronization contact No.	WORD	1	
$R+143$	Output filter time constant	DWOR	2	


FUN189   ME_RCPW	Motion Control Recipe Writing (ME_RCPW)	FUN189   ME_RCPW
Example		
- When N	OFF $\rightarrow$ ON, write all recipe tables from R1000.	

## 7-22-15 Cam Read (ME_CAMR)



## Operands

Md mode: 0 use PLC register
D cam start register: The start address of the register to be stored after reading the cam
ID cam number: Cam number
L cam resolution: The length of the temporary register to be stored after reading the cam

- When the execution control [EN] is triggered by the upper differential, Fun191 will read the specified ca When the execution control [EN] is triggered by the lower differential, all output indications are reset.
- When the cam is being read, the output indication [ACT] is ON.
- When reading the cam, if there is an error, the output indication [ERR] will be ON.
- When the reading of the cam is completed, the output indication [DN] ON.


## Example



When M1000 is from OFF $\rightarrow$ ON, read the cam ID: 1 data table and store 2048 in DR1000~DR5094.

## 7-22-16 Cam Write (ME_CAMW)

FUN192   ME_CAMW	Motion Control Cam Write (ME_CAMW )													FUN192   ME_CAMW	
Symbol															
								Md: Mode   D: Cam initial register   ID: Cam number   L: Cam resolution							
Relay and Register															
	wx	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K		XR
	$\begin{array}{\|c\|} \hline w \times 0 \\ 1 \\ w \times 100 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { wyo } \\ 1 \\ \text { wy100 } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { Wмо } \\ \text { । } \\ \text { wм910 } \\ 4 \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { I } \\ \text { ws308 } \\ 8 \end{gathered}$	$\begin{gathered} \text { To } \\ \text { T1023 } \\ \text { T102 } \end{gathered}$	$\left\lvert\, \begin{array}{c\|} \hline \\ \hline \\ \hline 1279 \\ \hline \end{array}\right.$	$\begin{array}{\|c} \text { R0 } \\ \text { R3476 } \\ 7 \end{array}$	R3476   8   1   R3502   3	$\begin{array}{\|c} R 3502 \\ 4 \\ \text { R } 1527 \\ 83 \\ 9 \end{array}$	$\begin{gathered} \mathrm{R} 3528 \\ 0 \\ 1 \\ \text { R4322 } \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{R} 4322 \\ 4 \\ \mathrm{R} 4731 \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { D0 } \\ 1 \\ \text { D1199 } \\ 9 \end{array}$			
Md	$\bigcirc$	0~1													
D	$\bigcirc$			$\bigcirc$											
ID	$\bigcirc$	1~16													
L	$\bigcirc$	2048~32767													

## Description

Operands
Md mode: 0 use PLC register
D cam start register: The start address of the register to be stored after reading the cam
ID cam number: Cam number
L cam resolution: The length of the temporary register to be stored after reading the cam

- When the execution control [EN] is triggered by the upper differential, Fun191 will read the specified ca When the execution control [EN] is triggered by the lower differential, all output indications are reset.
- When the cam is being read, the output indication [ACT] is ON.
- When reading the cam, if there is an error, the output indication [ERR] will be ON.
- When the reading of the cam is completed, the output indication [DN] ON.

Example


When M1000 is from OFF $\rightarrow$ ON, write the cam ID from DR1000~DR5094: 1 data table 2048.

## 7-22-17 Handwheel (ME_GEAR_IN)

$\begin{gathered} \hline \text { FUN193 } \\ \text { ME_GEAR_I } \\ \mathrm{N} \end{gathered}$		Handwheel (ME_GEAR_IN )												$\begin{gathered} \text { FUN193 } \\ \text { ME_GEAR_I } \\ \mathrm{N} \end{gathered}$	
Symbol															
Operand   M: EtherCat spindle number   S: EtherCat auxiliary shaft number   N: Gear ratio numerator   D: Gear ratio denominator   T: Conversion time (in ms)															
年 Relay and Register															
	$\begin{array}{\|c\|} \hline w x 0 \\ 1 \\ w \times 100 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \text { wyo } \\ 1 \\ \text { wrooo } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { WM0 } \\ \text { } \\ \text { Wm910 } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { wso } \\ \text { ws } 308 \\ 8 \end{gathered}$	$\begin{gathered} \text { To } \\ 3 \\ \text { T1023 } \end{gathered}$	$\left\|\begin{array}{c} c \\ c_{1} \\ \mathrm{c} 1279 \end{array}\right\|$	$\begin{array}{\|c} \text { R0 } \\ \text { R3476 } \\ 7 \end{array}$	$\begin{array}{cc} \hline \mathrm{R} 3476 \\ 8 \\ 1 \\ 1 \\ \mathrm{R} 3502 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { R3502 } \\ 4 \\ 4 \\ 2 \\ 23527 \\ 9 \end{array}$	$\begin{array}{\|c} \hline R 3528 \\ 0 \\ 1 \\ \text { R4322 } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { R4322 } \\ 4 \\ 1 \\ \text { R4731 } \\ 9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { D0 } \\ 1199 \\ \text { D199 } \\ \hline \end{array}$			P0, $\begin{gathered}\mathrm{V}, \mathrm{Z} \\ \text { P9 }\end{gathered}$
M	$\bigcirc$	1~16,100	108												
S	$\bigcirc$	1~1		$\bigcirc$											
N	$\bigcirc$														
D	$\bigcirc$														
T	$\bigcirc$														

## Description

Fun 193 (EtherCAT hand wheel) integrates position-synchronized hand wheel related settings to provid

- Operands

M spindle input source: EtherCAT_axis number 1~1
: Encoder_Gray code 100 (X8~X15)
: Encoder_hardware high-speed counter number 101 ~ 104 (HSC4~HSC7 )
S slave axis output target: EtherCAT_axis number 1~16
([M spindle input source] cannot be the same as [ S slave axis output target])

N Variable gear ratio numerator: positive and negative numbers, including the [decimal point position] ([Axis unit] set mm , [Decimal point position] set $0.001, \mathrm{~N}: \mathrm{DRO}=1000$ is equal to 1.000 mm )
D Variable gear ratio denominator: positive number (a real number greater than zero), including the [ $\mathrm{d} \epsilon$ T conversion time (ms): positive number (real number greater than zero), the unit is ms

- When the execution control [EN] is triggered by the upper differential, Fun193 uses the current parame When the execution control [EN] is triggered by the lower differential, Fun193 stops the synchronous cc - In handwheel synchronous control, if the update parameter [UPD] changes to 1, this command will upd
- When the hand wheel is under synchronous control, the output indication [ACT] is ON.
- During the synchronous control of the manual wheel, if an error occurs, the output indication [ERR] will
- When the update of the manual wheel parameters is completed, the output indication [UPD] ON.


After changing the parameters (D variable gear ratio denominator 0.002), when M1005 is from OFF $\rightarrow$ ON, update the hand wheel according to the changed parameters. After the parameter update is completed, the output indication [UPD] is ON, and the stroke of the slave axis of the hand wheel is halved.

## 7-22-18 Velocity Control Mode (ME_VEL_CTL)



- Operands

S speed control axis: EtherCAT_ axis number 1~16
V speed: speed setting value, unit Pulses/s
MX maximum torque limit: when the speed cannot reach the speed setting value, the maximum torque

- When the execution control [EN] is triggered by the upper differential, Fun194 uses the current parame When the execution control [EN] is triggered by the lower differential, Fun194 stops the axis speed con
- In axis speed control, if the update parameter [UPD] becomes 1 , this command will update the speed cc
- When the axis speed is under control, the output indicator [ACT] ON.
- During axis speed control, if an error occurs, the output indication [ERR] will be ON.
- When updating the speed control parameters is completed, the output indication [UPD] ON.

FUN194   ME_VEL_CT   L	Velocity Control Mode (ME_VEL_CTL)	FUN194
Example	ME_VEL_CT   L	



- When M1000 is from OFF $\rightarrow$ ON, start velocity control according to the current Fun194 parameters (S: EtherCAT axis 1, V: 131072 Pulses per second, MX: no torque limit).

Ladder


- After changing the parameter (V: 262144 Pulses per second), when M1005 changes from OFF to ON, the parameter update is completed according to the changed parameter update speed, and the output indicator M1004 [UPD] ON is turned on, and the speed doubles.


## 7-22-19 Torque Control Mode (ME_TORQ_CTL)

FUN195   ME_TOR_CT   L	Torque Control Mode (ME_TORQ_CTL)		$\begin{gathered} \text { FUN195 } \\ \text { ME_TOR_C } \\ \text { TL } \end{gathered}$
Symbol			
		S: Axis number   V: Speed command   MX: Maximum torque	

Relay and Register

	Wx	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} w \times 0 \\ 1 \\ \text { wx100 } \\ 8 \end{gathered}$	$\begin{gathered} \text { WYo } \\ 1 \\ \text { WY100 } \\ 8 \end{gathered}$	$\begin{array}{\|c} \text { WM0 } \\ \text { । } \\ \text { WM910 } \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c} \text { WSO } \\ 1 \\ \text { ws308 } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { TO } \\ \text { I } \\ \text { T1023 } \end{gathered}$	$\left\|\begin{array}{c} \mathrm{C0} \\ \mathrm{I} \\ \mathrm{C} 1279 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \mathrm{RO} \\ 1 \\ \mathrm{R} 3476 \\ 7 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { R3476 } \\ 8 \\ 1 \\ \text { R3502 } \\ 3 \end{array}$	$\begin{gathered} \text { R3502 } \\ 4 \\ 1 \\ \text { R3527 } \\ 9 \end{gathered}$	$\begin{gathered} \text { R3528 } \\ 0 \\ 1 \\ \text { R4322 } \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{R} 4322 \\ 4 \\ 1 \\ \mathrm{R} 4731 \\ 9 \end{gathered}$	$\begin{array}{\|c} \text { D0 } \\ \text { I } \\ \text { D1199 } \\ 9 \\ \hline \end{array}$		$\begin{gathered} \mathrm{V}, \mathrm{Z} \\ \mathrm{PO} \sim \mathrm{P9} \end{gathered}$
S	$\bigcirc$	1~16												
T	$\bigcirc$		$\bigcirc$											
MX	$\bigcirc$													

## Description

- Operands

S torque control axis: EtherCAT_ axis number 1~16
T torque: Torque setting value, unit 0.0\%
MX Maximum speed limit: When the torque cannot reach the torque setting value, the maximum speed

- When the execution control [EN] is triggered by the upper differential, Fun195 uses the current parame When the execution control [EN] is triggered by the lower differential, Fun195 stops the shaft torque co
- In axis torque control, if the update parameter [UPD] becomes 1, this command will update the torque
- When the axis torque is under control, the output indicator [ACT] ON.
- During axis torque control, if an error occurs, the output indication [ERR] will be ON.
- When updating the torque control parameters is completed, the output indication [UPD] ON.

$\begin{gathered} \text { FUN195 } \\ \text { ME_TOR_C } \\ \text { TL } \end{gathered}$	Torque Control Mode (ME_TORQ_CTL)	$\begin{gathered} \text { FUN195 } \\ \text { ME_TOR_C } \\ \text { TL } \end{gathered}$
Example		

- When M1000 is from OFF to ON, torque control is started according to the current Fun194 parameters (S: EtherCAT axis 1, T: 5.0\%, MX: no speed limit).

- After changing the parameter (T: 10.0\%), when M1005 changes from OFF $\rightarrow$ ON, the torque will be updated according to the changed parameter. After the parameter update is completed, the output indication M1004 [UPD] ON will double the torque.


## 7-22-20 Cam Generate (ME_CAM_GEN)



- Operands

ID cam number: 1~16
Md cam generation mode: 0 is the same as cam table, 1 is chasing shear curve
D register start bit: set the start register of the cam
L The number of cam curve segments: Mode 0 only has the setting of each segment of the cam, and oth

- When the execution control [EN] is triggered by the upper differential, Fun196 will generate the cam ac When the execution control [EN] is triggered by the lower differential, all output indications are reset.
- When the cam is being generated, the output indication [ACT] ON.
- When the cam is generating, if there is an error, the output indication [ERR] will be ON.
- When the cam generation is completed, the output indication [DN] will be ON.

Ladder


Cam Parameter

開始相位	結束相位	偏栘	凸輪輪磌	
1	$0.0000000(0)$	$50.1953125(1028)$	100.0000000	等加速度
2	$50.1953125(1028)$	$100.0000000(2048)$	0.0000000	簡諧

D

輷存器	項目	定義	
R1000	開始相位	0	第一段凸輪
R1001	結束相位	1028	
R1002	偏移	1000000000	
R1003	凸輸輪喭	1：等加速度	
R1004	開始速度	0	
R1005	結束速度	0	
R1006	開始加速度	0	
R1007	結束加速度	0	
R1008	開始相位	1028	第二段凸輪
R1009	結束相位	2048	
R1010	偏移	0	
R1011	凸輪輪廓	3：簡皆	
R1012	開始速度	0	
R1013	結束速度	0	
R1014	開始加速度	0	
R1015	結束加速度	0	

－When M1000 is from OFF to ON，the cam is generated according to the current Fun196 number（ID：cam number $1, \mathrm{Md}$ ：mode 0 ， D ：setting the cam generation parameters from R1000，L：2－stage cam curve）．

## 7-22-21 Axis Movement (ME_AXI_MV)


Relay and Register

	WX	WY	WM	WS	TMR	CTR	HR	IR	OR	SR	ROR	DR	K	XR
	$\begin{gathered} \text { wxo } \\ 1 \\ \text { wx100 } \\ 8 \end{gathered}$	$\begin{gathered} \text { WYo } \\ \text { । } \\ \text { wY100 } \\ 8 \end{gathered}$	$\begin{array}{\|c} \hline \text { Wмо } \\ \text { । } \\ \text { Wм910 } \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c} \text { WS0 } \\ \text { । } \\ \text { ws } 308 \\ 8 \\ \hline \end{array}$	$\begin{gathered} \mathrm{TO} \\ 1 \\ \mathrm{~T} 1023 \end{gathered}$	$\begin{gathered} \text { C0 } \\ \text { C1279 } \end{gathered}$	$\begin{array}{\|c\|} \text { RO } \\ 1 \\ \text { R3476 } \\ 7 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { R3476 } \\ 8 \\ 1 \\ \text { R3502 } \\ 3 \end{array}$	$\begin{gathered} \text { R3502 } \\ 4 \\ 1 \\ \text { R3527 } \\ 9 \end{gathered}$	$\begin{gathered} \text { R3528 } \\ 0 \\ 1 \\ \text { R4322 } \\ 3 \end{gathered}$	$\begin{gathered} \text { R4322 } \\ 4 \\ 1 \\ \text { R4731 } \\ 9 \end{gathered}$	$\begin{array}{\|c} \text { D0 } \\ \text { I } \\ \text { D1199 } \\ 9 \\ \hline \end{array}$		$\begin{gathered} V, z \\ P O \sim P 9 \end{gathered}$
S	$\bigcirc$	1~16												
MD													0~1	
Ps	$\bigcirc$													
V	$\bigcirc$													
A	$\bigcirc$													
D	$\bigcirc$													
SA	$\bigcirc$													
SD	$\bigcirc$													
DR	$\bigcirc$	1~2												
BF													0~5	

## FUN197

ME_AXI_MV

## Description

## - Operands

S EtherCAT control axis: EtherCAT_ axis number 1~16
MD operation mode: 0 absolute, 1 relative
PS target position: positive and negative numbers, including the [decimal point position] of the [motion ([Axis unit] set mm , [Decimal point position] set $0.001, \mathrm{PS}$ : DRO $=1000$ is equal to 1.000 mm )
V speed: positive number (a real number greater than zero), including the [decimal point position] of th
A Acceleration: positive number (a real number greater than zero), including the [decimal point positior

D Deceleration: positive number (a real number greater than zero), including the [decimal point positio SA S acceleration curve \%: positive integer, $0 \sim 1000$ \%
SD S deceleration curve \%: positive integer, $0 \sim 1000 \%$
DR direction: 1 positive direction, 2 negative direction
BF: Speed continuous mode: 0 executes the current command immediately, 1 waits for the end of the previous command speed continuous, 4 selects the current command speed continuous, 5 selects the $h$

- When the execution control [EN] is triggered by the upper differential, Fun197 executes the axis positio When the execution control [EN] is triggered by the lower differential, Fun197 stops the axis position co
- In axis position control, if the update parameter [UPD] becomes 1 , this command will immediately upda
- When the axis position is under control, the output indicator [ACT] ON.
- During axis position control, if an error occurs, the output indication [ERR] will be ON.
- When the axis position control is completed, the output indication [DN] will be ON.
- When updating the position control parameters is completed, the output indication [UPD] ON.

- When M1000 is from OFF $\rightarrow$ ON, according to the current Fun197 parameters (S: EtherCAT axis 1, MD: r acceleration $100.000 \mathrm{~mm} / \mathrm{s}^{\wedge} 2$, D: Deceleration $100.000 \mathrm{~mm} / \mathrm{s}^{\wedge} 2, \mathrm{SA}: \mathrm{S}$ acceleration curve $0.0 \%$, SD: S dec command immediately) to execute position control.


## 7-22-22 Mapping Table Setting (ME_SET_MAP)



- [Fun198 Write Mapping Table] is used to change a single or a small number of motion control parar parameters, you can use [Fun188 Recipe Read] and [Fun189 Recipe Write].
- Operands

Gp mapping table group number: group number $1^{\sim} 16,0$ means all groups.
N Mapping table start table number: mapping table number $1 \sim 1024,0$ means the entire mapping table
L Map Consecutive Length: Number of Consecutive Map Items

- When the execution control [EN] is triggered by the upper differential, Fun198 will map (write) the PLC When the execution control [EN] is triggered by the lower differential, all output indications are reset.
- When the mapping is being written, the output indication [ACT] ON.
- When the mapping is being written, if an error occurs, the output indication [ERR] will be ON.
- When the mapping is written in, the output indication [DN] will be ON.

$\begin{gathered} \text { FUN198 } \\ \text { ME_SET_M } \\ \text { AP } \end{gathered}$	Mapping Table Setting（ME＿SET＿MAP）			$\begin{gathered} \text { FUN198 } \\ \text { ME_SET_M } \\ \text { AP } \end{gathered}$
Example				
Mapping Table   Motion Axis Setting Table   When M1000 is from OFF to ON，according to the current Fun198 parameters（Gp 1： mapping table 1 （1：PM）， N ：starting from the first line of the mapping table（1：PM1），L： length 1）to execute mapping table writing，It can be seen from the motion axis setting table that the JOG speed has been modified to $2.000 \mathrm{~mm} / \mathrm{s}^{\wedge} 2$ ，and the inch movement distance has been modified to 6.000 mm ．				

## 7-22-23 Real Axis to Virtual Axis (ME_SET_MAP)

FUN235 ME_SET_VI R	Real Axis to Virtual Axis		$\begin{aligned} & \text { FUN235 } \\ & \text { ME_SET_VI } \\ & \text { R } \end{aligned}$
Symbol			
		AX: Axis number to be converted   EN: Trigger command   ACT: Acting   ERR: Conversion error   DN: Execution complete	
Description			

- This command is to convert real axis into virtual axis.
- Make sure the motion control system is in stop state before use, if it is in initialization state, ERR will output 1.
- If you need to stop the initialized system, you can refer to the instruction of FUN177 stop all motion flows.
- For details of this command, please refer to the instructions in the motion control manual.



## 7-23 Other Instructions (FUN115, FUN258)

## 7-23-1 Data Buffering (DBUF)

FUN115P DBUF	Data Buffering									FUN115P DBUF
Symbol										
					ID: Expansion module ID   CH: The channel designated for expansion module (0~3)   D: Starting position where the data will be saved.					
	$\begin{aligned} & \text { Range } \\ & \text { oped } \\ & \text { rand } \end{aligned}$	HR	IR	OR	SR	ROR	DR	K	XR	
		$\begin{gathered} \text { R00 } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \text { R34768 } \\ & \text { R3ase } \end{aligned}$	R33024 R35151	${ }_{\substack{\text { R35280 } \\ \text { R.323 }}}$	$\begin{aligned} & \mathrm{R} 8322424 \\ & \mathrm{Rq} 43139 \end{aligned}$	$\begin{gathered} \text { op } \\ \text { p119999 } \end{gathered}$		- $\begin{gathered}\mathrm{v} \mathrm{i}^{2} \\ \text { popp }\end{gathered}$	
	ID							0-127	$\bigcirc$	
	CH	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc *$	$\bigcirc *$	0-63	$\bigcirc$	
	D	$\bigcirc$				$\bigcirc$	$\bigcirc$			
Description										
It is used to obtain the data buffered on the module, which is suitable for expansion modules that have analog input and support data buffering function. The buffered data collected through this command will not be limited by the program scan cycle, but will be collected based on the sampling cycle set by the module.										


FUN115P   DBUF	Data Buffering	FUN115P   DBUF
Example		

The data buffer function can be controlled through the relay, and the digital operation value can be stored in the data buffer area to observe the change of the digital operation value.

## Use methods and instructions

Each buffer point updates the digital operation value to the data buffer area according to the processing time of the A/D conversion mode.
Each channel can store up to 600 points/ch.
Example:
When the cache points are set to 600 and the pre-trigger data points are set to 50:


Fig. 137: Example diagram of the data buffering function

## Setting and preset value

Setting	Preset Value
Buffer Points   Before Trigger	200
Buffer Points	600

Table 65: Setting of data buffering function

FUN115P   DBUF	Data Buffering	FUN115P   DBUF

The following table shows how to use the data buffer function:

## Run-time Relay Control

Data Buffer Relay	Description	Setting
Pata Buffer Request Relay	Buffer   Request	Off->On: Start buffering   On->Off: Suspend buffering
Pata Buffer Trigger Relay	Trigger	Off->On: Trigger data buffer relay
Pata Buffer Completion	Buffer   Completion   Status Relay	Off->On:   The specified cache points are completed, and the cache   can be read through command 115 (DBUF function).   On->Off:   Data Buffer Request Relay: On -> Off, Off when the   buffering is turned off.   Data Buffer Completion Status Relay: On->Off->On, Off   when retriggered, until Off->On after the buffer points   are completed.

Table 66: Steps to use the data buffering function
After the data buffering is completed, use Fun115 DBUF to read the buffered data stored in the module to the address of the PLC designated register.

## 7-23-2 Tare Weight Deduction Command



- To subtract the custom tare weight, you must change the config setting to "digital mode". In the "light touch mode", the current gross weight will be regarded as the tare weight directly deducted.
- Removing the fixed tare weight and recalibrating it may benefit from improved accuracy.
- When the Tare weight deduction command is enabled, if it is "light touch mode," it is the automatic parameter setting mode subtracting the current scale reading value.
- When the command of tare weight deducting is enabled, if the command mode is set to "digital", it is the manual parameter setting mode. At this time, the user can set the tare weight to be deducted by himself. When the command to enable tare weight deducting is sent, the command will subtract the corresponding weight according to the parameters set by the user.
- When RST OFF->ON, the setting before control will be restored.


## 7-23-3 Tare Weight Offset Command



FUN258P   MODCONF	Tare Weight Offset Command	FUN258P
MODCONF		

- Remove the fixed tare weight. By setting the Instrumentation amplifier gain and ADC gain, it is possible to improve ADC conversion accuracy.
- Automatically parameter setting mode set the command mode to 0 and send the command to enable the tare zero function. The module will automatically calculate the appropriate Instrumentation amplifier gain, ADC gain, and Digital value and send it back to the PLC.
- User manual setting mode, $\mathrm{MD}=1$, send a command to enable the tare zero function, and the command will be accompanied by the Instrumentation amplifier gain, ADC gain and Digital value set by the user. The Instrumentation amplifier gain is 433.92, 216.96 and 108.48, the ADC gain is $1,2,4,8$ and 16, and the Digital value setting range is $1 \sim 56874$ (2.1696 V).
- The formula for calculating fixed weight .

Fixed tare weight $=\left(\frac{\text { DAC digital value }}{65535} \times 2.5\right) \times \frac{\text { Rated capacity } \times \text { Number of } L C \text { sensor }}{I N A \text { gain } \times \text { Excitation voltage } \times \text { Rated ou }}$

- The suggested formula for ADC/INA Gain setting ,

$$
\frac{\text { Max weighting capacity }}{\text { Rated capacity } \times \text { Number of LC sensors }} \times \text { INA gain } \times \text { ADC gain } \leq 500=\left(\frac{\text { DAC digital value }}{65535} \times 2.5\right) \times
$$

$\frac{\text { Rated capacity } \times \text { Number of } \text { LC sensors }}{\text { INA gain } \times \text { Excitation voltage } \times \text { Rated output }}$
*The tare weight offset command is only supported by the LCR module, not by the LC.

## 7-24 Floating Point Instructions (FUN200~220)

## 7-24-1 CONVERSION OF INTEGER TO FLOATING POINT NUMBER



- The format of floating-point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When the execution control "EN" $=1$ or from $0 \rightarrow 1$ ( P instruction), the integer value data in the $S$ register is converted into floating-point format data, and then stored in the $D$ register.

FUN200D P $I \rightarrow F$	CONVERSION OF INTEGER TO FLOATING POINT NUMBER	FUN200D P $I \rightarrow F$



## 7-24-2 CONVERSION OF FLOATING POINT NUMBER TO INTEGER



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System)
- When the execution control "EN"=1 or from $0 \rightarrow 1$ (P command), the floating-point data in the $S$ register is converted into integer format data and stored in the $D$ register.
- If the value exceeds the valid range of destination, then do not carry out this instruction, and set the range-error flag "ERR" as 1 and the D register will be intact.



## 7-24-3 FLOATING POINT NUMBER ADDITION



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3-P. 118 (Numbering System).
- When addition control "EN"=1 or from $0 \rightarrow 1$ (P instruction), perform floating-point addition operation on Sa and Sb and write the result into D . If the execution result exceeds the expressible range of floating point numbers ( $+-3.4^{*} 1038$ )", the error flag "ERR" is set to 1 , and the value of the $D$ register is an invalid value, which should be ignored.

$\begin{gathered} \text { FUN202 } \\ \text { FADD } \end{gathered}$			FLOATING POINT NUMBER ADDITION			FUN202 P FADD
Example						
- When $\mathrm{X} 0=0 \mathrm{~N}$, performs the addition of the data specified at Sa and Sb :						
DR0 200Floating Point Number:DRO 43480000 H						
				DR20	43 AFOOOOH	

## 7-24-4 FLOATING POINT NUMBER SUBTRACTION

FUN 203 FSUB	FLOATING POINT NUMBER SUBTRACTION						FUN 203 P FSUB
Symbol	※Because floating-point numbers occupy two registers, when using indirect addressing, it should be noted that odd-numbered registers cannot be used.						
				Sa: Minuend   Sb: Subtrahend   D: Destination register to store the results of the subtraction   The register used by the operand must be an even address. For example, R8 is legal, but R7 is not.   $\mathrm{Sa}, \mathrm{Sb}, \mathrm{D}$ may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P} 9$ to serve indirect addressing.			
		HR		DR			
		HR	ROR	DR	K	XR	
			$\begin{array}{\|l\|l\|} \hline \text { Ra32344 } \\ \text { Req4319 } \end{array}$	(in	$\begin{gathered} \text { floating } \\ \text { point } \\ \text { number } \end{gathered}$	$\begin{aligned} & \mathrm{vzz} \\ & \text { pope } \end{aligned}$	
		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		$\bigcirc$	$\bigcirc *$	○*		$\bigcirc$	
Description							

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When addition control "EN"=1 or from $0 \rightarrow 1$ (P instruction), perform floating-point addition operation on Sa and Sb and write the result into D . If the execution result exceeds the expressible range of floating point numbers (+-3.4*10 38)", the error flag "ERR" is set to 1 , and the value of the D register is an invalid value, which should be ignored.

$\begin{gathered} \text { FUN } 203 \\ \text { FSUB } \end{gathered}$	FLOATING POINT NUMBER SUBTRACTION		FUN 203 P FSUB
Example			
$\mathrm{x}^{\times 0}$	_EN-	Sa: 203.FSUB   RO   Sb:   D $:$ ${ }^{\text {R4 }}$   R10	

- When $\mathrm{XO}=\mathrm{ON}$, performs the subtraction of the data specified at Sa and Sb

$\qquad$

DR10 C 3960000 H

## 7-24-5 FLOATING POINT NUMBER MULTIPLICATION

FUN 204 P FMUL	FLOATING POINT NUMBER MULTIPLICATION						FUN 204 P FMUL
Symbol	※Because floating-point numbers occupy two registers, when using indirect addressing, it should be noted that odd-numbered registers cannot be used.						
Sa: Multiplicand   Sb: Multiplier   D: Destination register to store the results of the multiplication   The register used by the operand must be an even address. For example, R8 is legal, but R7 is not.   $\mathrm{Sa}, \mathrm{Sb}, \mathrm{D}$ may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{Pg}$ to serve indirect addressing							
		HR	ROR	DR	K	XR	
		${ }_{\substack{\text { R0 } \\ \text { R34767 }}}$	$\begin{aligned} & \text { R4322424 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ \text { 0119999 } \end{gathered}$	(tioting	v,z	
	Sa	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Sb	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	D	$\bigcirc$	$\bigcirc *$	$\bigcirc *$		$\bigcirc$	
Description							

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System)-P.118.
- When addition control "EN"=1 or from $0 \rightarrow 1$ (P instruction), perform floating-point addition operation on Sa and Sb and write the result into D . If the execution result exceeds the expressible range of floating point numbers (+-3.4*10 38)", the error flag "ERR" is set to 1 , and the value of the $D$ register is an invalid value, which should be ignored.

FUN 204 $\mathbf{P}$   FMUL	FLOATING POINT NUMBER MULTIPLICATION	FUN 204 $\mathbf{P}$   FMUL
Example		



When $\mathrm{M} 10=\Delta$ Performs the multiplication of the data specified at Sa and Sb : \begin{tabular}{|l|l|l|l|}
\hline DR10 \& 123.45 <br>
\hline

$\Rightarrow$ Floating Point Number: 

\hline DR10 \& 42 F6E666H <br>
\hline
\end{tabular}

| DR12 | 678.54 |
| :--- | :--- | :--- | :--- |$\Rightarrow$ Floating Point Number: | DR12 | 4429 A 28 FH |
| :--- | :--- | :--- |

$\times$

DR14	47 A 39 AE $2 H$

## 7-24-6 FLOATING POINT NUMBER DIVIDION



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System)-P.118.
- When addition control "EN"=1 or from $0 \rightarrow 1$ (P instruction), perform floating-point addition operation on Sa and Sb and write the result into D . If the execution result exceeds the expressible range of floating point numbers (+-3.4*10 38)", the error flag "ERR" is set to 1 , and the value of the $D$ register is an invalid value, which should be ignored.

- When $\mathrm{X} 5=\mathrm{ON}$, performs the division of the data specified at Sa and Sb :

DR0	125.25		
	$\checkmark$ Floating Point Number:	DR0	42 FA 8000 H


| DR2 | 5 |
| :--- | :--- |$\triangleleft$ Floating Point Number: | DR2 | 40 A 00000 H |
| :--- | :--- |



DR4	41 C 86666 H

## 7-24-7 FLOATING POINT NUMBER COMPARE



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System)-P.118.
- Compares the data of Sa and Sb when the compare control input "EN" $=1$ or from 0 to 1 ( $\mathbf{P}$ instruction). If the data of Sa is equal to Sb , then set FO 0 to 1 . If the data of $\mathrm{Sa}>\mathrm{Sb}$, then set FO1 to 1. If the data of $\mathrm{Sa}<\mathrm{Sb}$, then set FO2 to 1 . If the data of $\mathrm{Sa}<\mathrm{Sb}$, then set the FO2 to 1 .

- When XO=ON, compares the data of Sa and Sb :

- From the above example, we first assume the data of DRO is 200.1 and DR2 is 200.2, compare the data when X0 $=1$ by executing the CMP instruction. The FOO and FO1 are set to 0 and FO2 $(a<b)$ is set to 1 since $a<b$.
- If you want to have the compound results, such as $\geqq$ ' $\leqq$ ' < > etc., please send = ' < and $>$ results to relay first and then combine the result from the relays.


## 7-24-8 FLOATING POINT NUMBER ZONE COMPARE



$\begin{gathered} \text { FUN } 207 \text { P } \\ \text { FZCP } \end{gathered}$	FLOATING POINT NUMBER ZONE COMPARE	$\begin{gathered} \text { FUN } 207 \\ \text { FZCP } \end{gathered}$
Example		
$\stackrel{\times 0}{1}$		

- The instruction compares the value of DR10 with the upper and lower limit zones formed by DR12 and DR14. If the values of DR10~DR14 are as shown in the diagram at bottom left, then the result can then be obtained as at the right of this diagram.
- If want to get the status of out side the zone, then OUT NOT YO may be used, or an OR operation between the two outputs $\mathrm{S}>\mathrm{U}$ and $\mathrm{S}<\mathrm{L}$ may be carried out, and move the result to YO.




## 7-24-9 FLOATING POINT NUMBER SQUARE ROOT



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System)-P.118.
- When the operation control "EN"=1 or from $0 \rightarrow 1$ ( P instruction), take the square root value of the $S$ value or the content value of the temporary register designated by $S$ and store it in the temporary register designated by D .
- If the value of $S$ is negative, then the error flag "ERR" will be set to 1 , and do not execute the operation.



## 7-24-10 SIN TRIGONOMETRIC INSTRUCTION



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System)-P.118.
- When operation control "EN" = 1 or from 0 to 1 ( P instruction), take the SIN value of the angle data specified by the $S$ register and store the result into the register $D^{\sim} D+1$ in floating point number format. The valid range of the angle is from -18000 to +18000 , unit in 0.01 degree.
- If the $S$ value is not within the valid range, then the $S$ value error flag "ERR" will be set to 1 , and do not execute the operation.

FUN 209 $\mathbf{P}$   FSIN	SIN TRIGONOMETRIC INSTRUCTION	FUN 209 $\mathbf{P}$   FSIN
Example		

XO EN | 209P.FSIN |
| :--- |
| S : |
| D : |
| : |
| R100 |$\quad$ ERR

- In the example above, when $\mathrm{X} 0=\mathrm{ON}$, store the value of $\mathrm{SIN} \angle 30$ in DR100.


$$
\operatorname{SIN}(30)=0.5
$$

## 7-24-11 COS TRIGONOMETRIC INSTRUCTION



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When operation control "EN" = 1 or from 0 to 1 ( $\mathbf{P}$ instruction), take the COS value of the angle data specified by the $S$ register and store the result into the register $D^{\sim} D+1$ in floating point number format. The valid range of the angle is from -18000 to +18000 , unit in 0.01 degree.
- If the $S$ value is not within the valid range, then the $S$ value error flag "ERR" will be set to 1 , and do not execute the operation.

$\begin{gathered} \text { FUN } 210 \text { P } \\ \text { FCOS } \end{gathered}$	COS TRIGONOMETRIC INSTRUCTION				$\begin{gathered} \text { FUN } 210 \\ \text { FCOS } \end{gathered}$
Example					
	- XO EN210P.FCOS    S: :   D RO   : R200				

- In the example above, when $\mathrm{XO}=\mathrm{ON}$, store the value of $\operatorname{COS} \angle 60$ in DR 200 .



## 7-24-12 TAN TRIGONOMETRIC INSTRUCTION



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When the operation control "EN"=1 or from $0 \rightarrow 1$ (P instruction), the $S$ value or the content value of the temporary register designated by $S$ is taken from the TAN function and stored in the temporary register designated by D. The effective range of $S$ is $-18000 \sim+18000$, the unit is 0.01 degree.
- If the $S$ value is not within the valid range, then the $S$ value error flag "ERR" will be set to 1 , and do not execute the operation.

| FUN 211 P <br> FTAN | TAN TRIGONOMETRIC INSTRUCTION | FUN 211 P <br> FTAN |
| :---: | :---: | :---: | :---: |
| Example |  |  |

- In the example above, when $\mathrm{MO}=$ store the value of $\mathrm{TAN} \angle 45$ into DD50.

$\operatorname{TAN}(45)=1$


## 7-24-13 CHANGE SIGN OF THE FLOATING POINT NUMBER



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System). 。
- When operation control "EN" = 1 or from 0 to 1 ( $\mathbf{P}$ instruction), the sign of the floating point number register specified by D will be toogled.
- If value of $D$ was originally negative, the result of taking a negative number will become a positive number.

| FUN 212 $\mathbf{p}$ <br> FNEG | CHANGE SIGN OF THE FLOATING POINT NUMBER | FUN 212 $\mathbf{~}$ <br> FNEG |
| :---: | :---: | :---: | :---: |
| Example |  |  |

The instruction at left negates the value of the DRO register, and stores it back to DRO.

DR0	123.45	$\Rightarrow$ Floating Point Number :	DR0	42F6E666H
勺(NEGATION)				ת $\mathrm{XO}=$ ¢
DR0	-123.45		DR0	C2F6E666H

## 7-24-14 FLOATING POINT NUMBER ABSOLUTE VALUE



- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When operation control "EN" = 1 or from 0 to 1 ( $\mathbf{P}$ instruction), calculate the absolute value of the floating point number register specified by $D$, and write it back into the original $D$ register.

$\begin{gathered} \text { FUN } 213 \\ \text { FABS } \end{gathered}$	FLOATING POINT NUMBER ABSOLUTE VALUE	$\text { FUN } 213 \text { P }$ FABS
Example		
	. X0 EN- FABS RO	

- This instruction calculates the absolute value of the DRO register, and stores it back in DRO.

DR0	-100.25	$\checkmark$ Floating Point Number :	DR0	C 2 C 88000 H
$\checkmark$ (ABSOLUTE)				$\checkmark \mathrm{XO}=\uparrow$
DR0	100.25		DR0	$42 \mathrm{C88000H}$

## 7-24-15 FLOATING POINT ARC SINE FUNCTION

FUN 218 P FASIN	FLOATING POINT ARC SINE FUNCTION						FUN 218 P FASIN
Symbol	※Because floating-point numbers occupy two registers, when using indirect addressing, it should be noted that odd-numbered registers cannot be used.						
EN	- 218P.FASIN $\qquad$   S:   D:   MD:		ERR	S: Source data or register to be calculated the arc sine value.   The register used by the operand must be an even address. For example, R8 is legal, but R7 is not.   D : Register for storing the result.   $\mathrm{S}, \mathrm{D}$ may combine with $\mathrm{V}, \mathrm{Z}, \mathrm{PO} \sim \mathrm{P9}$ to serve indirect address application.   MD: In order to make the user more intuitive in use, MD can choose the output mode:   MD is 0 : the output value is the radius, and the output is a floating point number (32bit).   MD is 1 : the output value is an angle, and the output is a positive integer (16bit).			
		HR	ROR	DR	K	XR	
		$\begin{gathered} \text { R0 } \\ \text { R34767 } \end{gathered}$	$\begin{aligned} & \text { R43224 } \\ & \text { R47319 } \end{aligned}$	$\begin{gathered} \text { Do } \\ 011999 \\ 01109 \end{gathered}$		$\begin{gathered} \mathrm{v}, \mathrm{z} \\ \text { popg } \end{gathered}$	
	S	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	D	$\bigcirc$	$\bigcirc *$	$\bigcirc *$		$\bigcirc$	
	MD				0,1		
Description							

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When the operation control "EN"=1 or from $0 \rightarrow 1$ ( $P$ instruction), the $S$ value or the temporary register content value designated by $S$ takes the arc sine function value (unit is Radian) and stores it in D specified register.
- Range of $S$ data: $-1^{\sim}+1$; range of $D$ value: $-\pi / 2 \sim \pi / 2$ (Unit in radian)
- If the value of $S$ exceeds the valid range, or the indirect addressing is wrong, the error flag "ERR" is set to 1 , and the contents of the register designated by $D$ will not be updated.
- All floating point instructions can't be executed in interrupt service routine.

FUN 218 $\mathbf{P}$   FASIN	FLOATING POINT ARC SINE FUNCTION, $\sin ^{-1}$	FUN 218   FASIN
Example		



- When $M O=1$, calculate the arc sine value of $D R 4$, then store the degree $(M D=1)$ to $D R 6$.

Name	Status	Data	Comment
DR0	DEC	30	$[R 0]$
DR4	FLOAT	0.005235963	$[R 4]$
DR6	DEC	30	$[R 6]$


FUN 219 FACOS	FLOATING POINT ARC COSINE FUNTION					FUN 219 FACOS
Symbol	※Because floating-point numbers occupy two temporary registers, when using indirect addressing, it should be noted that odd-numbered temporary registers cannot be used.					
EN				S: Source data or register to be calculated the arc cosine value.   The register used by the operand must be an even address. For example, R8 is legal, but R7 is not.   D: Register for storing the result.   $\mathrm{S}, \mathrm{D}$ may combine with V, Z, PO~P9 to serve indirect address application.   MD: In order to make the user more intuitive in use, MD can choose the output mode:   $M D$ is 0 : the output value is the radius, and the output is a floating point number (32bit). MD is 1: the output value is an angle, and the output is a positive integer (16bit).		
	Range   Ope.   rand   S	HR	ROR	K	XR	
		(1)	$\begin{aligned} & \text { R43224 } \\ & \text { R47319 } \end{aligned}$	${ }_{\substack{\text { floting } \\ \text { pent }}}$ point	$\mathrm{X}, \mathrm{R}$ vopg popg	
	S	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	D	$\bigcirc$	$\bigcirc *$		$\bigcirc$	
	MD			0,1		
Description						

- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System).
- When the operation control "EN" $=1$ or from $0 \rightarrow 1$ ( $P$ instruction), the $S$ value or the temporary register content value designated by $S$ takes the arc cosine function value (unit is Radian) and stores it in D specified register.
- Range of $S$ data: $-1^{\sim}+1$; range of $D$ value: $-\pi / 2 \sim \pi / 2$ (Unit in radian)
- If the value of $S$ exceeds the valid range, or the indirect addressing is wrong, the error flag "ERR" is set to 1 , and the contents of the register designated by $D$ will not be updated.
- All floating point instructions can't be executed in interrupt service routine.

- When $M 0=1$, calculate the arc cosine value of $D R 4$, then store the degree ( $M D=1$ ) to $D R 6$.

Name	Status	Data	Comment
DR0	DEC	30	$[R 0]$
DR4	FLOAT	0.99998629	[R4]
DR6	DEC	30	[R6]

## Step Instruction Description

8-1 The Operation Principle of Step Ladder Diagram .....  3
8-2 Basic Formation of Step Ladder Diagram .....  4
8-3 Introduction of Step Instruction: STP , FROM - TO • STPEND .....  9
8-4 Notes for Writing a Step Ladder Diagram. ..... 28
8-5 Application Examples ..... 32
8-6 Syntax Check Error Codes for Step Instruction ..... 39

Structured programming design is a major trend in software design. The benefits are high readability, easy maintenance, convenient updating and high quality and reliability. For the control applications, consisted of many sequential tasks, designed by conventional ladder program design methodology usually makes others hard to maintain. Therefore, it is necessary to combine the current widely used ladder diagrams with the sequential controls made especially for machine working flow. With help from step instructions, the design work will become more efficient, time saving and controlled. This kind of design method that combines process control and ladder diagram together is called the step ladder language.
The basic unit of step ladder diagram is a step. A step is equivalent to a movement (step) in the machine operation where each movement has an output. The complete machine or the overall sequential control process is the combination of steps in serial or parallel. Its step-by-step sequential execution procedure allows others to be able to understand the machine operations thoroughly, so that design, operation, and maintenance will become more effective and simpler.

## 8－1 The Operation Principle of Step Ladder Diagram

【Example】

M9131


【Description】
1．STP Sxxxx is the symbol representing a step Sxxxx that can be one of S0～S3103． When executing the step（status ON），the ladder diagram on the right will be executed and the previous step and output will become OFF．
2．M9131 is on for a scan time after program start．Hence，as soon as ON，the stop of the initial step SO is entered（SO ON）while the other steps are kept inactive，i．e．Y1～Y5 are all OFF．This means M9131 ON $\rightarrow$ SO $\mathrm{ON} \rightarrow \mathrm{YO} \mathrm{ON}$ and YO will remain ON until one of the contacts X 1 or X 2 is ON ．
3．Assume that $X 2$ is $O N$ first；the path to S 21 will then be executed． $\mathrm{X} 2 \mathrm{ON} \Rightarrow\left\{\begin{array}{lll}\mathrm{S} 21 & \mathrm{ON} \\ \text { SO OFF }\end{array} \Rightarrow\left\{\begin{array}{lll}\mathrm{Y} 2 & \mathrm{ON} \\ \mathrm{YO} & \mathrm{OFF}\end{array}\right.\right.$ Y2 will remain oNFuntil X $5^{Y 0}$ is OFF OF ．
4．Assume that X 5 is ON ，the process will move forward to step S23． i．e． $\mathrm{X} 5 \mathrm{ON} \Rightarrow \mathrm{S} 23 \mathrm{ON}$ ． Y 4 ON $Y 4$ and $Y 5$ will remain SN until X 6 is ON ．
※If X10 is ON，then Y 5 will be ON ．${ }^{\circ}$
5．Assume that X 6 is ON ，the process will move forward to SO．
i．e．X6 ON $\Rightarrow$ SO ON
S23OFF $\Rightarrow\left\{\begin{array}{ll}\mathrm{YO} & \mathrm{ON} \\ \mathrm{Y} 4, \mathrm{Y} 5\end{array}\right.$ OFF Then，a control process cycle is completed and the next control process cycle is entered．

## 8-2 Basic Formation of Step Ladder Diagram

(1) Single path

	-	Step S20 alone moves to step S21 through            XO.
STP S20	-X0 can be changed to other serial or   parallel combination of contacts.	
X0		
STP S21		

(2) Selective divergence/convergence


- Step S 20 selects an only one path which divergent condition first met. E.g. X2 is ON first, then only the path of step S 23 will be executed.
- A divergence may have up to 8 paths maximum.
- $\mathrm{X} 1, \mathrm{X} 2, \ldots . ., \mathrm{X} 22$ can all be replaced by the serial or parallel combination of other contacts.
(3) Simultaneous divergence/convergence


After XO is ON, step S20 will simultaneously execute all paths below it, i.e. all S21, S22, S23, and so on, are in action.

- All divergent paths at a convergent point will be executed to the last step (e.g. S30, S31 and S32). When X1 is ON, they can then transfer to S 40 for execution.
- The number of divergent paths must be the same as the number of convergent paths. The maximum number of divergence/convergence path is 8 .
(4) Jump
a. The same step loop

- There are 3 paths below step S20 as shown on the left. Assume that X 2 is ON , then the process can jump directly to step S23 to execute without going through the process of selective convergence. ${ }^{\circ}$
- The execution of simultaneous divergent paths can not be skipped.
b. Different step loop

M9131		X10	
STP SO		STP S7	
X0	X4	X11	X12
STP S20	S30	STP	S21
X2		X1	
STP S21		STP	
X3		X3	

(5) Close Loop and Single Cycle
a. Close Loop

M9131
STP S1
X0

STP S20 STP S21

X1
STP S22
X2

- The initial step S1 is ON, endless cycle will be continued afterwards.

b. Single Cycle

```
M9131 . X0
 STP S0
 X1
 STP S20
 X2
 STP S21 RST S21
```

c. Mixed Process
M9131
STP SO

X0	X1	X2	
STP S20	STP S21	STP S24	
X3	X4	X7	
X5			STP S25
		RST S25	
STP S22	STP S23		

    X6
    (6)Combined Application


The maximum number of downward horizontal branch loops of an initial step is 16

## 8-3 Introduction of Step Instruction: STP , FROM •TO, STPEND

This section will introduce step instructions, and how to call instructions in UpperLogic, and how to use them.
Step instructions can be called by:
Select the function bar Ladder $\rightarrow$ Function Instruction; Or click the component panel icon; or right-click in the ladder diagram program area to display a pop-up menu, Function Instruction $\rightarrow$ Function Instruction, click on the position where you want to input the step command in the ladder diagram program area, All categories of function instructions will appear, select[SFC instruction], there are four step instructions [STP], [FROM], [TO], and [STPEND] on the right of the instruction name, as shown in the figure below: :


## 8－3－1 STP

STP Sx $:$ S0 $\leqq$ Sx $\leqq$ S7（Displayed in UperLogic ）or STP Sx：S0 Sx $\leqq$ S7 This instruction is the initial step instruction，from which the step control of each mechanical process can be derived．M－Series can provide up to 8 initial step points，that is to say，a PLC can control up to 8 processes at the same time．each step process can operate independently or generate operation results for reference by other processes．

【Example 1】Start the initial step point SO every time when turn on PLC

	UperLogic
M9131	
M9131 TO S0	
STP S0	STP S0

【Example 2】Every time turn on PLC or press the button，or an abnormality in automatic production occurs and there is no personnel to deal with it within a certain period of time，it will automatically enter the initial step point S0 and stand by．

UperLogic


【Description】XO ：button ；MO ：Abnormal Contact
STP Sxxx ：S20 Sxxxx SS3103（Displayed in UperLogic）
or
STP Sxxxx ：S20 $\leqq$ Sxxxx $\leqq$ S3103
This instruction is a step instruction，each step in a process represents a step of sequence．If the status of step is ON then the step is active and will execute the ladder program associate to the step．
【Example】
UperLogic

M9131


## 【Description】

1. When ON , the initial step SO is ON and YO is ON .
2. When transfer condition X10 is ON (in actual application, the transferring condition may be formed by the serial or parallel combination of the contacts $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}$ and C ), the step S20 is activated. The system will automatically turn SO OFF in the current scan cycle and $Y 0$ will be reset automatically to OFF.

$$
\text { i.e.X10 ON } \Rightarrow\left\{\begin{array} { l } 
{ \text { S20 ON } } \\
{ \text { S0 OFF } }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\mathrm{X} 1 \mathrm{ON} \rightarrow \mathrm{Y} 1 \mathrm{ON} \\
\mathrm{X} 2 \mathrm{ON} \rightarrow \mathrm{Y} 2 \mathrm{ON} \\
\mathrm{Y} 0 \text { OFF }
\end{array}\right.\right.
$$

3. When the transfer condition X 11 is ON , the step SO is $\mathrm{ON}, \mathrm{Y} 0$ is ON and $\mathrm{S} 20, \mathrm{Y} 1$ and Y 2 will turn OFF at the same time.

$$
\begin{aligned}
& \text { i.e. } X 11 \\
& \mathrm{ON} \Rightarrow
\end{aligned} \quad\left\{\begin{array} { l } 
{ \text { SO ON } } \\
{ \text { S20 OFF } }
\end{array} \Rightarrow \left\{\begin{array}{l}
Y 0 \text { ON } \\
\text { Y1 OFF } \\
\text { Y2 OFF }
\end{array}\right.\right.
$$

- Enter step point (STP Insruction)

If we want to set an initial step point SO for each boot, the method is as follows:
Select the A contact component on the component tray, click on the ladder diagram network, and enter "M9131" in the number input box :


Click on the component panel icon, click after the "M9131" contact, the [Application Command] window will appear, select "SFC Instruction" under [Type], select "TO" for [Instruction Name], and press the "OK" button, the following window appears :


Enter "SO", press the "OK" button, and repeat the "SF instruction", this time select "STP" for [instruction name], and the following figure will appear :


Input "SO" and press the "OK" button to complete the operation of setting an initial step point SO for each boot.


You can also add state transition conditions for the initial step point. First, place the cursor on the component panel to select the [vertical line] component, and then click on "STPI SO"; or stop the cursor on "STPI SO", and then press the shortcut key "V" works too.


After the divergence line appears, add transition conditions, for example, we add two transition conditions "XO" and "YO".


After adding the state point to be transferred, we assume that when the two transfer conditions of "XO" and "YO" are satisfied (ON), it will transfer to the state point "S21". Call out the [SFC function instruction] category, select [TO] for the instruction name; or press the shortcut key " $>$ ", after a dialog box appears, enter "S21" to complete the following example :


## 8-3-2 FROM

- FROM Sxxxx : S0 $\leqq$ Sxxxx $\leqq$ S3103 (Displayed in UperLogic )

The instruction describes the source step of the transfer, i.e. moving from step Sxxxx to the next step in coordination with transfer condition.
【 Example】



## 【Description】：

1．When $O N$ ，the initial step $S O$ is $O N$ ．If $X O$ is $O N$ ，then $Y O$ will be $O N$ ．
2．When $S O$ is $O N$ ：a．if $X 1$ is $O N$ ，then step $S 20$ will be $O N$ and $Y 1$ will be $O N$ ．
b．if X 2 is ON ，then step S 21 will be ON and Y 2 will be ON ．
c．if $X 3$ is $O N$ ，then step $S 22$ will be $O N$ and $Y 3$ will be $O N$ ．
d．if $\mathrm{X} 1, \mathrm{X} 2$ and X 3 are all ON simultaneous，then step S 20 will have the priority to be ON first and either S21 or S22 will not be ON．
e．if X 2 and X 3 are ON at the same time，then step S 21 will have the priority to be ON first and S22 will not be ON．。

3．When S 20 is ON ，if X 5 and $\mathrm{X7}$ are ON at the same time，then step S 23 will be $O N$ ， Y4 will be ON and S20 and Y1 will be OFF．
4．When S21 is ON，if X4 is ON，then step SO will be ON and S21 and Y2 will be OFF．
5．When S 22 is $O N$ ，if $X 6$ and $X 7$ are $O N$ at the same time，then step $S 23$ will be $O N$ ， $Y 4$ will be ON and S22 and Y3 will be OFF．
6．When $S 23$ is $O N$ ，if $X 8$ is $O N$ ，then step $S 0$ will be $O N$ and $S 23$ and $Y 4$ will be OFF．

- Enter convergence point (FROM)

1. selective convergence


If we want to make the above results, we will do the following: We first call the [SFC function instruction] category by referring to the operation method in section 7.4.2, select [FROM] for the instruction name, and press"OK", and the following window will appear.


Input "S21", press the "OK" button, move the cursor on the component panel to select the [A contact] component and click it, the following window will appear:


Input "X5", press "ENTER", use the function instruction again, call out the [SFC function instruction] category, select [FROM] for the instruction name, and press "OK".


Input "S22", press the "OK" button, move the cursor on the component panel to select the [A contact] component and click it $\begin{array}{ll}\text { FROM } \quad \text { S21 }\end{array}$, the following window will appear :


Input "X6", press "ENTER" , the cursor will select the [vertical line] component in the component panel, click it immediately after the X5 contact; or press the shortcut key "V" after the cursor is placed in X 5 , a vertical line will appear. line, as shown in the following figure :


Enter "X7", as shown in the following image :


Use the function command again, call out the [SFC function instruction] category, select [TO] for the instruction name, and then press "OK" to appear.


Input "S23" and press "OK" to complete an example of selective convergence. As shown below.

2. Simultaneous convergence


If we want to make the above result, the method is as follows: We first call the [SFC function instruction] category by referring to the operation method in section 7.4.2, select [FROM] for the instruction name, and press "OK", and the following window will appear:


Input "S21", press "OK", call out the [SFC function instruction] category again, select [FROM] for the instruction name, and press "OK", the following window will appear :


Enter "S22", press "OK" , select the [vertical line] component with the cursor on the component panel, and then click it; or press the shortcut key "V", that is, to complete the expression of the parallel and confluent ladder diagram program.


Select the [A Contact] component with the cursor on the component panel, and then click FROM S21


Enter "X3" and press "ENTER". Use the function command again, call out the [SFC function instruction] category, select [TO] for the instruction name and press "OK", and the following window will appear :


Input "S23" and press "OK" to complete the example of simultaneous convergence. As shown below :


Special attention should be paid to the [vertical line] element in order to complete the simultaneous convergence. It must be next to $\stackrel{\text { FROM }}{\text { S21 }}$. Once there is a space in the middle, it will become a selective convergence, as shown below:


## 8-3-3 TO

- TO Sxxxx : $\mathrm{SO} \leqq$ Sxxxx $\leqq$ S3103 ( Displayed in UperLogic )

This instruction describes the step to be transferred to.
【Example】


## 【Description】:

1. When ON , the initial step SO is ON . If XO is ON , then YO will be ON .
2. When $S 0$ is $O N$ : if $X 1$ is $O N$, then steps $S 20$ and $S 21$ will be $O N$ simultaneously and $Y 1$ and $Y 2$ will also be ON.
3. When S 21 is ON : if X 2 is ON , then step S 22 will be $\mathrm{ON}, \mathrm{Y} 3$ will be ON and S 21 and Y 2 will be OFF.
4. When S 20 and S 22 are ON at the same time and the transferring condition X 3 is ON , then step S23 will be ON (if X4 is ON, then Y4 will be ON) and S20 and S22 will automatically turn OFF and Y 1 and Y 3 will also turn OFF.
5. When S 23 is ON : if X 5 is ON , then the process will transfer back to the initial step, i.e. So will be ON and S23 and Y4 will be OFF.

- Enter divergence point (TO Instruction)

Using the UperLogic ladder diagram program are as follows :

1. Selective Divergence


If we wanted to make the above result :
Place the cursor at the desired input position in the program area, call out the [SFC function instruction] category, and select the instruction name [FROM] :


Input "S30" and press "OK", the FROM instruction S30 element will appear in the program area. Cursor to select the A contact element and click on it, and enter the "X3" number; or directly enter "AX3" directly after it, as shown in the following window :


Type XO followed by it,


Place the cursor at the desired input position in the program area, then call the [SFC function instruction] category, and select [TO] ;


Enter "S31", press "OK", the cursor is placed at the X0 position, enter "V", and add a vertical line, as shown in the following figure :


Place the cursor below X0 and enter "X1" or "X1A" :


Call the [SFC function instruction] category, and select [TO] :


Input "S32" and press "OK", an example of selective divergence is completed. As shown below :

2. Simultaneous Divergence


If we want to make the above result, the method is as follows :
Place the cursor at the desired input position in the program area, call the [SFC function instruction] category, and select [FROM] :


Input "S30" and press "OK", the FROM instruction will appear. Cursor to select the A-contact component, click and select it, and enter "X3" or "AX3", as shown in the following window :


Place the cursor at the desired input position in the program area, call the [SFC function instruction] category, and select [TO] :


Input "S31" and press "OK", the TO instruction will appear. At the position below the instruction TO command S31, call the [SFC function instruction] category, and select [TO] :


Enter "S32" and press "OK". Select the vertical line component, click the icon in the program area
то 531 ; or press the shortcut key " V ", the following figure will appear:


That is, to complete the example of Simultaneous divergence.

## 8－3－4 STPEND

－STPEND：（ Displayed in UperLogic ）
This instruction represents the end of a process，which is required for all processes to work correctly． PLC has at most 8 step processes（ $\mathrm{SO}^{\sim} \mathrm{S} 7$ ）that can be controlled at the same time，so there are at most 8 STPEND instructions．

## 【Example】



【Description】8 step processes are activated at the same time when PLC boot．

## 8-4 Notes for Writing a Step Ladder Diagram

## 【Notes】

- In actual applications, the ladder diagram can be used together with the step ladder.
- There are 8 steps, $\mathrm{SO} \sim \mathrm{S7}$, that can be used as the starting point and are called the "initial steps".
- When PLC starts operating, it is necessary to activate the initial step. The M9131 (the first scan ON signal) provided by the system may be used to activate the initial step.
- Except the initial step, the start of any other steps must be driven by other step.
- It is necessary to have an initial step and the final STPEND instruction in a step ladder diagram to complete a step process program.
- There are 3085 steps, S20 ~ S3103, available that can be used freely. However, used numbers cannot be repeated. S2064 ~ S3103 are retentive(The range can be modified by users), can be used if it is required to continue the machine process after power is off.
- Basically, a step must consist of three parts which are control output, transition conditions and transition targets.
- MC and SKP instructions cannot be used in a step program and the sub-programs. It's recommended that JMP instruction should be avoided as much as possible.
- If the output point is required to stay $O N$ after the step is divergent to other step, it is necessary to use the SET instruction to control the output point and use RST instruction to clear the output point to OFF.
- Looking down from an initial step, the maximum number of horizontal paths is 16 . However, a step is only allowed to have up to 8 branch paths.


## 【Example 1】



【Description】：1．Input the condition to initial step SO
2．Input the SO and the divergent conditions of S20，SO and S21
3．Input the S20
4．Input the S21
5．Input the convergence of S20 and S21
6．Input the S22

【 Example 2】


【Description】：1．Input the condition to initial step SO
2．Input the SO and the divergent condition of S2O and S22
3．Input the S20
4．Input the S21
5．Input the S22
6．Input the convergence of S21 and S22
7．Input the S23

【 Example 3】


【Description】：1．Input the condition to initial step S0
2．Input the SO and the divergences of S20 and S24
3．Input the S20
4．Input the S20 and the divergences of S21 and S22
5．Input the S21
6．Input the S22
7．Input the convergences of S21 and S22
8．Input the S23
9．Input the S24
10．Input the convergences of S23 and S24

## 8-5 Application Examples

【 Example 1】Grasp an object from tank A and put it in Tank B




Release claw
Return to the left limit
Return to the upper limit
Turn the switch ON before moving to S20
Stretch arm downward
Move to S21 after stretching to the lower limit
Claw grasps (since the SET instruction is used, Y 4 should remain ON after departing from STP S21)
Divergent into S22 after 1S
Lift the arm up
Divergent into S23 after reaching the upper limit
Move arm to the right
Divergent into S24 after moving to the right limit Stretch the arm downward Divergent into S25 after stretching to the lower limit Release claw Delay for 1 S
Transfer into S26 after 1S Lift the arm up Divergent into S27 after reaching the upper limit Move the arm to the left Divergent into SO after moving to the left limit (a complete cycle)

【Example 2】Liquid Stirring Process


- Input Points: Empty limit switch X1

Noliquid linit switch X2
Empty limit switch X3
Over-load switch X4
Warning clear button X5
Start button X6
Water washing button X7

- Warning Indicators: Empty dried material Y1

Insufficient liquid Y2
Empty stirring unit Y3
Motor over-load Y4

- Output point: dry material feeding valve Y5

Dry feed valve Y6
Liquid feed valve Y7
Start motor solenoid valve Y 8
Fresh water inlet valve Y 9
Finished product feed valve Y100

- Weighing Output: CHO (R3840)


UperLogic
Warning indicators

## Reset warning

Production start
Water washing start Input weighing

Status after weighing Divergent into S21 and S22 Add liquid to stirring unit

Complete dried material and liquid input, transfer the status to S23

Stirring timer

Wash stirring unit Input clean water

Drain water out

Output finished product and accumulate the cycle

【Example 3】Pedestrian Crossing Lights


- Input Pedestrian Push Button Point: X0

Pedestrian Push Button X1

- Output Road Red Light Yo

Points: Road Amber light Y1
Road Green Light Y2
Pedestrian Crossing Red Light Y3 Pedestrian Crossing Green Light Y4

## - Pedestrian Crossing Lights Control Process Diagram



- Pedestrian Crossing Lights Control Program

UperLogic


## 8-6 Syntax Check Error Codes for Step Instruction

The error codes for the usage of step instruction are as follows:
E51: TO(SO-S7) must begin with ORG instruction.
E52 : TO(S20-S3103) can't begin with ORG instruction.
E53 : TO instruction without matched FROM instruction.
E54 : To instruction must comes after TO, AND, OR, ANDLD or ORLD instruction.
E56 : The instructions before FROM must be AND, OR, ANDLD or ORLD
E57 : The instruction after FROM can't be a coil or a function
E58: Coil or function must before FROM while in STEP network
E59 : More than 8 TO\# at same network.
E60 : More than 8 FROM\# at same network.
E61 : TO(SO-S19) must locate at first row of the network.
E62 : A contact occupies the location for TO instruction.
E71: Incomplete connection (should not happen)
E72 : Duplicated TO Sxxxx instruction.
E73 : Duplicated STP sxxxx instruction.
E74 : Duplicated FROM sxxxx instruction.
E76 : TP(SO~S19) without a matched STPEND or STPEND without a matched STP(SO~S19).
E77 : The previous network of STP(SO~S19) is not the only ORG~S19(SO~S19)
E78 : TO(S20~S3103), STP (S20~S3103) or FROM instructions comes before or without STP(S0~S19).
E79: STP Sxxxx or FROM Sxxxx instructions comes before or without TO Sxxxx.
E80: FROM Sxxxx instruction comes before or without STP Sxxxx.
E81 : The max level of branches must <=16.
E82 : The max number of branches with same level must <=16.
E83 : Not place the step instruction with TO->STP->FROM sequence.
E84 : The definition of STP\# sequence not follow the TO\# sequence.
E85 : Convergence do not match the corresponding divergence.
E86 : Illegal usage of STP or FROM before convergent with TO instruction.
E87 : STP\# or FROM\# comes before corresponding TO\#.
E88 : During this branch, STP\# or FROM\# comes before the corresponding TO\#.
E89 : FROM\# comes before corresponding TO\# or STP\#.
E90: Invalid To\# usage in the simultaneous branch.

E91 : Last STP (SO~S19) has not been processed completely, use ORG, LBL, RTS, RTI, MCE, SKPE, FOR, NEXT, ENDD.

## Real Time Clock (RTC)

9-1 Correspondence Between RTC and the RTCR Within PLC .....  2
g-2 RTC Access Control and Settings .....  3

A real time clock (RTC) has been built in the M-Sreies PLC's MC/MN main unit. No matter whether the PLC is switched on or off, the RTC will always keep accurate time. It provides 7 kinds of time value data-week, year, month, day, hour, minute and second. Users can take advantage of the real time clock to do 24 hour controls throughout the year (for example, businesses or factories can switch lights on and off at set times each day, control gate access, and do pre-cooling and preheating before business or operations begin). It can enable your control system to automatically coordinate with people's living schedules, and not only will it raise the level of automatic control, it will improve efficiency.

## 9-1 Correspondence Between RTC and the RTCR Within PLC

Within PLC, there are special purpose registers (RTCR) for storing the time values of the RTC. There are 8 RTCR registers in all, going from R35312 to R35319. R35312 to R35318 are used to store the 7 kinds of time values mentioned above, from weeks to seconds. Because in practical daily application, certain hour and minute time data is often used, we have specially merged the time values of the hour register (R35314) and minute register (R35313) within RTCR, and put them in R35319 high byte and low byte, so they can be accessed by the user. The diagram below shows the correspondence between RTC and the RTCR within PLC, as well as the control switch and status flag (M9179-M9182) related to RTC accessing.


## 9-2 RTC Access Control and Settings

Within PLC, R35312~R35318 registers have been allocated to store the time values of RTC, and this is of great convenience to the user. However, if you want to load the set values of R35312~R35318 into RTC or read out what is in RTC onto R35312~R35318, and tune the time value etc, then the setting must be done using the special relays (M9179 and M9180) for RTC access. Below is an explanation of the access and adjustment procedures, and the status flag relays.

- RTC setting (R35312 ~ R35318 $\rightarrow$ RTC):

The setting action is only executed once at the moment that relay M1952 goes from $1 \rightarrow 0$ (falling edge).

Note: If you want to load the set values into RTC, you must first make M9179 as 1 and then load the set values into R35312~R35318. The loading of the set values into R35312~R35318 can be done via MOVE instruction. However, you must first halt the RTC read out (make M9179 as 1), otherwise the data that you just wrote into R35312~R35318 will immediately be overridden by the time data being read back from RTC in the opposite direction.

- RTC readout (RTC $\rightarrow$ R35312~R35319) :

Whenever the M9179 relay is 0 (RTC timing active). With every scan, CPU will take the time value data within RTC and move it to R35312~R35319. When it is 1 , it will not read out. In this case R35312~R35318 can load in the set values and they won't be overridden.

- $\pm 30$ second adjustment :

At the moment that the status of relay M9180 goes $1, \mathrm{CPU}$ will check the value of the second register (R35312) within RTC. If its value is between 0 and 29 seconds then it will be cleared to 0 . If its value is between 30 and 59 seconds then besides being cleared to 0 , the minute register (R35313) will be increased by 1 (ie, one minute will be added). This can be used to adjust your RTC time value.

- M1981 RTC installation detecting flag :

When RTC is fitted to the PLC, relay M9181 will be set as 1 ; otherwise it will be 0 .

- M9182 set value error flag :

When the time value which is set to RTC's IC is illegal, then the error flag relay M9182 will be set as 1 , and the setting action will not be executed.

Note: M-Series PLC's Real Time Clock has already set the time, so customer don't need to set it again when using it. However, if you need to reset by yourself, in addition to using your ladder diagram program or using FP-07C and using the control of M9179 as described in item 1 RTC setting method to make settings, on the UperLogic package software, we provide more convenient setting function. As long as you enter the time you want to set, press the set button to complete the setting, and you don't need to deal with the control of M9179, please refer to the instructions of the Ladder Master package software.

## Setting the calendar with UpperLogic

Click the "calendar" Item which in Tool bar: PLC

> calendar
$\rightarrow$ Click right button and select "New Table"


- 〔PLC current time〕

It is means current time of PLC in on-line situation. In the "Setup" frame, if "Apply PC time" item is chosen then current time of PC will display below, press "Update PLC time" button to write PC's current time into PLC. But if "Apply PC time" item isn't chosen you can modify the Date and Time by yourself. After you change the Date and Time, press "Update PLC time" button to write the Date and time into PLC's calendar.

## Amendment Record

Version	Date	Description	Page	Author
V0.0.01	$2020 / 11 / 02$	Version 1		
V0.0.02	$2020 / 12 / 07$	Version 2		
V0.0.02	$2021 / 01 / 05$	Version 3		
V1.0	$\mathbf{2 0 2 1 / 0 4 / 2 6}$	Version 4	502	


[^0]:    Schematic diagram of PLC ladder diagram program scan

[^1]:    Note: Those marked with " " in special relays and temporary registers are forbidden to be written. Meanwhile, this kind of relays are still prohibited/disabling control and forced setting, and TU and TD contacts are not provided.

[^2]:    Ladder Diagram of Retentive Output Coil

